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Incremental Missing-Data Imputation for
Evolving Fuzzy Granular Prediction
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Abstract—Missing values are common in real-world data
stream applications. This paper proposes a modified evolving
granular fuzzy rule-based model for function approximation and
time series prediction in an online context where values may
be missing. The fuzzy model is equipped with an incremental
learning algorithm that simultaneously imputes missing data
and adapts model parameters and structure over time. The
evolving Fuzzy Granular Predictor (eFGP) handles single and
multiple missing values on data samples by developing reduced-
term consequent polynomials and utilizing time-varying granules.
Missing at random (MAR) and missing completely at random
(MCAR) values in nonstationary data streams are approached.
Experiments to predict monthly weather conditions, the number
of bikes hired on a daily basis, and the sound pressure on
an airfoil from incomplete data streams show the usefulness
of eFGP models. Results were compared with those of state-
of-the-art fuzzy and neuro-fuzzy evolving modeling methods. A
statistical hypothesis test shows that eFGP outperforms other
evolving intelligent methods in online MAR and MCAR settings,
regardless of the application.

Keywords—Evolving Intelligence, Fuzzy System, Data Stream,
Incremental Learning, Missing-Data Imputation.

I. INTRODUCTION

Knowledge discovery from data streams is helpful for many
practical purposes. Detecting frequent patterns, trends, season-
alities, nonstationarities may help human decision-making in a
variety of situations, applications and endeavors. Data mining,
machine learning and computational intelligence methods have
been applied to the purpose of finding useful information in
sets of data [1]. These methods generally fit data patterns into
classification or prediction models.

Data sources may be static or time-varying depending if
their probability distributions change over time. In this con-
text, static very often means that the source remains nearly
unchanged so that data collected in a specific time interval
are sufficient to represent reasonably well the behavior of
the process or phenomenon in the future. Conversely, time-
varying means that the data distribution is subject to variations
(concept change), and online learning and model adaptation are
necessary.

Models to deal with time-varying data streams must take
into consideration that: (i) samples cannot be permanently
stored; (ii) data sets are potentially unbounded; (iii) processing
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time should scale linearly (or at least polynomially) with the
number of samples, attributes and model parameters; and (iv)
the data distribution may change gradually (concept drift) or
abruptly (concept shift) at any time, or new patterns may
emerge [1]–[12]. A survey on evolving fuzzy and neuro-fuzzy
systems that deal with these fundamental issues and with
some additional challenges of online-modeling and learning
scenarios was recently published in [13].

The vast majority of stream-oriented learning methods re-
quire the values of all attributes to be available to work
properly. However, missing values are common in real-world
applications. Missing data arise due to incomplete obser-
vations, data transfer problems, malfunction of sensors or
devices, incomplete information obtained from experts or on
public surveys, among others [14][15]. Three ways of treating
missing data can be mentioned [16]: (i) discard samples, or
even attributes, with many missing data; (ii) impute values by
maximum likelihood and parameter estimation procedures; and
(iii) identify relationships among attributes and from previous
values of an attribute to estimate new values.

Statistical and intelligent methods have been proposed to
deal with missing data, especially in offline settings, where
historical datasets are available [17][18]. General methods en-
tail deleting samples that contain one or more missing values,
deleting attributes with more than a predefined percentage of
their values missing, or imputing zeros, mean, or median for an
attribute. After imputation, the complete, approximated, dataset
is used for learning, classification, or prediction [15][17][19].
Model-based imputation methods provide a nonlinear way of
handling missing data. These methods very often outperform
general and independent methods [16][20]. In [21], for exam-
ple, several standalone imputation methods were overcome in
a number of datasets and situations by imputation methods
used in conjunction with a given predictive model.

Evolving systems are intelligent systems that, differently
from adaptive and machine-learning systems, learn their pa-
rameters and structure simultaneously using a stream of data
[1][13][22][23]. The structural elements of evolving systems
can be artificial neurons, fuzzy rules, data clusters, data clouds,
sub-trees, or information granules [3][13][23]. To deal with
nonlinear and time-varying processes, evolving models should
be updated through the use of online learning algorithms
so that eventually-large data flows can be processed in real
time. The use of offline methods in this kind of problem is
infeasible due to the unavailability of data to offline training,
and tight time and memory constraints [1][13]. In this paper,
missing values in nonstationary data streams is for the first
time considered by means of an evolving approach.
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An evolving, fuzzy-rule-based model, modified to include
an incremental learning algorithm for missing-data imputation
and model adaptation, is proposed in this study. The result,
which we call the evolving Fuzzy Granular Predictor (eFGP),
is useful for function approximation and prediction problems.
Different from many statistical and machine-learning meth-
ods, eFGP is suited for time-varying environments subject to
concept drifts and shifts. Its rule base is built incrementally
from scratch; meanwhile, the parameters of fuzzy granules
and local linear functions are computed recursively based on
data streams that may contain missing at random, MAR, and
missing completely at random, MCAR, data. eFGP handles
single missing values on data samples by developing reduced-
term consequent polynomials. Additionally, multiple missing
values on samples are dealt with using the midpoints of time-
varying granules evolved in the data space.

A granule is a clump of entities that may originate at
the numeric or granular level and are arranged together due
to their similarity, proximity, functionality, or coherency [1]
[24]. Information granulation means that, instead of dealing
with detailed real-world data, the data are considered in a
more abstract and conceptual perspective. The goal of a time-
varying granule is to catch the essence of the most recent
data in a concise and explainable manner. Whenever yes-or-no
quantification of concepts becomes too restrictive, fuzzy sets
offer the feature of describing granules whose constituting el-
ements may belong only partially. Fuzzy sets avoid specifying
solid borders between full belongingness and full exclusion by
means of smooth transition boundaries [24].

The remainder of this paper is organized as follows. Section
II presents essential notions of missing-data imputation and
a literature review. Section III describes the eFGP approach,
which differs from other evolving-intelligent approaches, be-
cause it addresses single and multiple MAR and MCAR values
in data streams by means of reduced-term consequent polyno-
mials and adaptive granules. Section IV presents prediction
results, discussions, and comparisons to other evolving fuzzy
and neuro-fuzzy methods. Section V presents the conclusion
and discusses the outlook for further research.

II. CONTEXTUALIZATION OF MODEL-BASED
IMPUTATION METHODS

A. Fundamental Concepts
Missing data is a common occurrence. A datum is missing

if no value is available for the underlying attribute of a sample.
There exist several ways to handle missing data. Some of
the simplest ways are: (i) casewise deletion, where the whole
observation is removed; (ii) replacing the missing value with
either zero or the mean for the attribute; and (iii) estimating
the missing value using a special type of model, known as
an imputation model [20]. The first two options may be used
if the number of missing values is small and/or the dataset
is large enough that a few lost or approximated samples
are relatively insignificant [18][20][25]. Both case deletion
and imputation transform an incomplete dataset into a fully-
populated rectangular format.

Depending on the nature of the missing data, they can be
classified as:

• Missing completely at random (MCAR): the propensity
for a value to be missing is completely random, i.e., the
probability of any value being missing is equal to the
probability of any other value being missing;

• Missing at random (MAR): the propensity of the values
of a specific attribute to be missing is higher than those
of other attributes; e.g. a sensor is not working properly,
or one of the questions in a survey is harder to answer
than the others;

• Not missing at random (NMAR): missing values are
dependent on other missing values; e.g., a sensor is not
working properly in a portion of its range of values, or
people tend not to answer a question in a survey if their
depression level is high.

Slightly different definitions and interpretations may be found
across research communities.

Data imputation should consider the nature of the data. For
nominal attributes (words), for example, there are approaches
such as the Global Most Common method [26]. For numerical
data (real numbers), there exists a variety of simpler intuitive
and model-based approaches [19][25][27].

A negative consequence of using simple imputation methods
is that compelling a missing value to take the previously-
found value, the attributes mean value, or a value of zero may
produce a dataset with distorted covariances and correlations.
If this dataset is applied to a machine-learning system, an inac-
curate model may be obtained leading to poor approximations
or erroneous conclusions. Removing incomplete observations
from the dataset may cause substantial loss of information
depending on the fraction of incomplete samples.

Model-based imputation methods are grounded on statis-
tical and machine-learning fundamentals. While linear and
stationary interpolation for imputation may naturally make
the completed dataset biased, depending on the level of non-
linearity and nonstationarity involved, nonlinear model-based
imputation focuses on replacing the missing value with the best
estimate, based on previously sampled data [25]. Data streams
impose further challenges to nonlinear modeling. Imputation
and model adaptation should require reasonably limited time
and memory. Incremental algorithms should scan samples only
once [1][2][13].

The eFGP method described in the next section is suitable
for online nonstationary environments. When the data stream
changes (gradually or abruptly), a fuzzy model with reduced-
term consequent polynomials – useful for prediction and data
imputation – is adapted (parametrically or structurally). While
most methods to deal with missing data cope with a single
missing value per sample, eFGP is robust to multiple MAR
and MCAR values per data-stream sample.

B. Brief Literature Review
Intelligent methods for missing-data imputation usually rely

on various fuzzy-clustering techniques, such as Fuzzy C-
Means (FCM) [28]–[30], Support Vector Regression (SVR)
[28][31], or neural networks [29][32]. These techniques may
be combined with machine-learning procedures. Often, meta-
heuristics, such as Genetic Algorithm (GA) [28] or other bio-
inspired techniques [32]–[34], are used for parameter adjust-
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ment. Intelligent models provide a nonlinear way to impute
values based on information uncovered from the data.

A method to integrate SVR, FCM, and GA is proposed in
[28]. FCM and SVR are trained with ‘complete’ data, i.e., with
samples without missing values. Samples with missing values
are used as inputs to a fuzzy model (using partial distance
calculation), and to the trained SVR model. Estimations by
both models are compared. If their difference is greater than
a predefined error threshold, then GA is used to adapt the
number of fuzzy clusters and an FCM weighting factor. Oth-
erwise, FCM is used to estimate the missing values. Results
were compared with an imputation-with-zeros approach and
with other model combinations such as FCM-GA and SVR-
GA. The proposed SVR-FCM-GA approach provided more
accurate results.

A missing-data-estimation scheme, similar to [28], is dis-
cussed in [14]. FCM and SVR are replaced by a weighted
K-Nearest Neighbor algorithm and an auto-associative neural
network known as Auto-Encoder. Both [14] and [28] assume
MAR type of data and, therefore, depend on the correlation
between attributes. Maximum likelihood procedures are also
commonly used for data imputation. Reference [35] points out
that maximum likelihood has a number of advantages for small
datasets with different patterns, nonlinear dynamics, and higher
proportions of missing values.

A review on missing-data imputation methods for offline
classification is given in [17]. A number of imputation algo-
rithms such as Regularized Expectation-Maximization, Singu-
lar Value Decomposition and Bayesian Principal Component
Analysis [36] were analyzed. Empirical results obtained by
applying the Wilcoxon Signed Rank Test strongly argued in
favor of the convenience of using imputation methods instead
of resorting to case deletion or lack of imputation. However,
there is no consensus about a best method for different
datasets. Handling missing values has also been considered
in conjunction with other pattern classification topics such as
imbalanced datasets, semi-supervised learning, scalability, and
temporal databases [36]–[38].

Grounded in the missing-data theory and well-validated sta-
tistical principles, two flagship techniques in modern missing-
data analysis have shown to be promising [39]. The first
concerns model-based or randomization-based inference for
multiple imputation. The second is Full Information Max-
imum Likelihood (FIML) analyses. FIML requires a set
of auxiliary variables, correlated with variables containing
missingness, to be included in the model to avoid bi-
ased estimates [40]. Randomization-based inference requires
repeatedly-chosen samples under a specific experiment. There-
fore, FIML and Random inference cannot be directly applied
to nonstationary data streams since the data are not available
a priori for correlation analyses and resampling, and their
statistical properties change over time. Evolving model-based
inference for multiple imputation and prediction in online
nonstationary environment is investigated in this paper.

Limitations of the aforementioned methods include: (i) prior
availability of a closed input-dataset is generally necessary; (ii)
offline learning methods require multiple passes over the data
to determine the parameters of the imputation model, in spite

of the use of nonlinear models; and (iii) the resulting classifier
or predictor does not deal with the types of changes typical
of nonstationary environments. Evolving methods, such as the
eFGP, presented in this paper, address these limitations and are
appropriate to nonstationary environments subject to concept
changes. eFGP self-develops its rule structure and updates its
parameters to handle, respectively, abrupt and gradual changes
in online data streams. This characteristic is a key advantage of
eFGP over the majority of machine learning and computational
intelligence methods.

The fundamental idea is that the eFGP’s learning updates the
parameters of a fuzzy granule that is eventually located closer
to the current data sample compared to the other granules. If
a sample does not belong to any granule, but belongs to the
expansion region of some granules, then the closest granule
is chosen to be updated. This granule expands its bounds to
cover the sample and, at the same time, the coefficients of
associated local linear functions are updated. The granule may
be dragged toward new samples if such samples belong to the
same region. Concept shift and new behaviors may produce
samples located relatively far from the current granules. As
these samples are not in the expansion region of any granule,
it is not practical to drag a granule toward them because
the pattern that such granule currently represents would be
forgotten. Thus, the eFGP approach is to create a new granule
to cover the region where such ‘far samples’ are placed. This
new granule is governed by a new rule, which expands the
eFGP rule-base.

III. EVOLVING FUZZY GRANULAR PREDICTOR

A. Preliminaries
Evolving fuzzy-set-based granular modeling was proposed

in [41][42] as a framework for modeling data streams in which
the measured values are inherently uncertain. Information
based on perception can be represented as fuzzy, interval, or
numerical data to be taken into account in the fuzzy granular
framework. Stream data are compressed to a few granules
whose location and granularity reflect the structure of the data.
This paper aims to model and process numerical (pointwise)
data only. We focus on the question of missing data and model
robustness.

eFGP provides pointwise and granular prediction of non-
stationary functions, and linguistic description of the behavior
of a system. Local eFGP models consist of IF-THEN rules
developed incrementally from the data. Learning can start from
an empty rule base and, as new information arises, granules
and rules are created and their parameters updated over time.
eFGP is therefore inherently accommodating of change in the
source data, so that the resulting models never need to be
redesigned or retrained from scratch.

For each granule constructed in the data space, there exists
a corresponding rule that summarizes the general behavior of
the elements that constitute the granule. The eFGP learning
algorithm incrementally adapts granules and other parameters
associated to rules so that the fuzzy model captures recent
occurrences without forgetting previous behaviors.

Symbol conventions and definitions used in this paper are
summarized in Table I for reference.
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TABLE I: List of symbols and definitions

Symbol Definition
x n-dimensional input vector
xj j-th attribute of the input vector
y Actual output
ŷ Estimated output

[h] Time index (superscript)
γi i-th information granule
xθ Missing value
|θ| Amount of missing values in a given x
Aij i-th trapezoidal membership function of the j-th input attribute
ai
j

Lower limit of the support of Aij
aij Lower limit of the core of Aij
aij Upper limit of the core of Aij
a
i
j Upper limit of the support of Aij
ρj Maximum length that Aij can assume
Bi i-th membership function of the output y
bi
j

Lower limit of the support of Bi

bij Lower limit of the core of Bi

b
i
j Upper limit of the core of Bi

b
i

j Upper limit of the support of Bi

σ Maximum length that Bi can assume
pi Complete affine consequent function of the i-th rule
αij j-th coefficient of function pi

qiθ θ-th consequent function with reduced argument-list
of the i-th rule – the θ-th term is omitted

βijθ j-th coefficient of function qiθ
Ψicom Activation degree of the i-th rule for the complete function pi

Ψiinc Activation degree of the i-th rule for an incomplete function qiθ
ch Convex hull operator
mp Midpoint operator
hr Number of iterations to perform merging and deleting

RMSE Root Mean Square Error
NDE Non-Dimensional Error

B. Evolving Fuzzy Granular Model for Prediction and
Missing-Data Imputation in an Online Environment

Let (x, y)[h], h = 1, ..., be the h-th observation of a data
stream. x ∈ <n is an input multi-dimensional vector, and
y ∈ < is the actual output. Vectors are denoted by boldface
lowercase letters. The actual output y[h] will be known after
the input x[h] arrives and a prediction ŷ[h] is given. An attribute
xj of x = (x1, ..., xn) is a real value. The same holds for y.
The pair (x, y) is a point in the product space X × Y . Let
γi ∈ X × Y , i = 1, ..., c, be the current set of eFGP granules
built on the basis of (x, y).

Rules Ri governing granules γi are given as

Ri: IF (x1 is Ai1) AND ... AND (xn is Ain)

THEN (y is Bi)︸ ︷︷ ︸
Linguistic

AND

(
ŷ = pi(x1, ..., xn)︸ ︷︷ ︸

Functional

OR ŷ = qiθ(x1, ..., xθ−1, xθ+1, ..., xn), θ = 1, ..., n︸ ︷︷ ︸
Functional with reduced argument-list (xθ omitted)

)

where xθ is a missing value; pi and qik are affine functions; and

Aij = (ai
j
, aij , a

i
j , a

i
j) and Bi = (bi, bi, b

i
, b
i
) are trapezoidal

membership functions related to the i-th rule. Trapezoidal
functions are canonically represented by four parameters listed
in ascending order, see Fig. 1. The intermediate parameters of

Aij and Bi form the core. The core of a membership function,
say Aij , is the region [aij , a

i
j ] of the universe (range of possible

values) of xj characterized by elements with full membership
in the set Aij . The boundary parameters of a membership
function form its support. The support of Aij is the region
[ai
j
, a
i
j ] of the universe xj characterized by elements with

nonzero membership in the set Aij . The membership degree
of xj in Aij is given by µij . Therefore, if xj belongs to the
core of Aij , then µij = 1. If xj does not belong to the support
of Aij , then µij = 0. Notice that qik has one term less than pi
and that a disjunction operator (OR) relates the terms. The set
of rules Ri, i = 1, ..., c, is a fuzzy granular description of a
system. Initially, c = 0, i.e., no prior knowledge is assumed.
A rule provides a granular (by means of active output fuzzy
sets Bi) and a pointwise (by means of pi or qiθ) prediction.
The functional consequent is given by either pi, in case x[h]

is complete, or qiθ, in case xθ is missing. The linguistic
consequent offers prediction bounds and interpretability since
trapezoids Bi can be connected to linguistic values.

Fig. 1: Trapezoidal membership function

Affine functions are given as

pi(x) = αi0 +
n∑
j=1

αijxj , (1)

and

qiθ(x) = βi0θ +
n∑

j=1,j 6=θ

βijθxj , (2)

θ = 1, ..., n. In general, coefficients αij and βijθ, j = 0, 1, ..., n;
j 6= θ, are not linearly correlated in the sense of Pearson. They
can only be fully correlated if the coefficient αiθ, directly re-
lated to a particular missing value xθ, is equal to 0. Consequent
functions, pi and qiθ ∀θ, are updated using the Recursive Least
Squares algorithm [42]. Subsequently, Section III-C addresses
model structure and parameter adaptation.

As trapezoids Aij may overlap, eFGP pointwise prediction
is found as the weighted mean value,

ŷ =

c∑
i=1

Ψi
com pi(x1, ..., xn)

c∑
i=1

Ψi
com

, (3)
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for a complete x, or

ŷ =

c∑
i=1

Ψi
inc q

i
θ(x1, ..., xθ−1, xθ+1, ..., xn)

c∑
i=1

Ψi
inc

, (4)

if xθ is missing. The activation degree of the i-th rule for x
complete or incomplete, Ψi

com or Ψi
inc, is obtained from

Ψi
com = T (Ai1(x1), ..., Ain(xn)) (5)

or

Ψi
inc = T (Ai1(x1), ..., Aiθ−1(xθ−1), Aiθ+1(xθ+1), ...

..., Ain(xn)). (6)

T is any triangular norm. The minimum (Gödel) T-norm is
used in this paper, but other choices are possible.

Granular prediction is given by the convex hull of sets Bi
∗
,

where i∗ are indices of active granules for x[h]. The convex
hull of a set of trapezoids, say B1, ..., Bc, is given as

ch(B1, ..., Bc) = (T (b1, ..., bc), T (b1, ..., bc),

S(b
1
, ..., b

c
), S(b

1
, ..., b

c
)), (7)

where S is the selected T-norm’s corresponding conorm (the
maximum T-conorm in this case). Figure 2 illustrates the con-
vex hull operation of the trapezoids B1 and B2 defined in the
output dimension. The result is also a trapezoidal membership
function. Trapezoidal prediction given by ch(.) encloses ŷ and
may help decision making and improve model acceptability.
For example, the enclosure of ŷ, provided by the support
of active trapezoids, may be interpreted as optimistic and
pessimistic estimates in an application. Often, such enclosure
of the output data can be more important than the numerical
estimates since, with pointwise values, we have no idea about
the error or uncertainty involved in the estimation.

Fig. 2: Example of convex hull of the membership functions
B1 and B2 defined in the universe of the output variable y

Suppose a sample x[h] has multiple missing values, say
xθ1 and xθ2 . A straightforward, but not practical, approach
to deal with multiple missing data is to consider additional
consequent functions with fewer terms. However, the number
of parameters to be updated would scale exponentially with
the number of attributes.

An effective approach for multiple missing values we em-
ploy for eFGP modeling consists in imputing the midpoint of
the input membership functions related to the most active rule
for the missing values. In this case, the activation level of the
rule Ri, i = 1, ..., c, is calculated as

Ψi
inc = T (Ai1(x1), ..., Aiθ1−1(xθ1−1), Aiθ1+1(xθ1+1),

..., Aiθ2−1(xθ2−1), Aiθ2+1(xθ2+1), ..., Ain(xn)). (8)

If Ri is the most active rule for x[h] according to Ψi
inc, then

the midpoint of its membership functions related to the missing
values are used for imputation. The midpoint is the mean value
of the core parameters of the membership function, i.e.,

x
[h]
θ1

= mp(Aiθ1) =
(aiθ1 + aiθ1)

2
(9)

and

x
[h]
θ2

= mp(Aiθ2) =
(aiθ2 + aiθ2)

2
. (10)

The imputed (complete) sample is used by the fuzzy model to
provide numerical and granular predictions at the time step h.
If x[h] has multiple missing values, Eq. (8) is used to choose the
most active rule. After the imputation from Eq. (9) and (10),
the complete equations, Eq. (3), (5), and (1), are combined
to produce the numerical prediction. Additionally, the support
of the convex hull of active membership functions, obtained
from Eq. (7), is used to provide the granular prediction.
The multiple-imputation procedure extends straightforwardly
to larger amounts of missing data per sample.

C. Incremental Adaptation of the Fuzzy Granular Model
Let the midpoint of a trapezoidal membership function

be the average of its core parameters, similar to Eq. (9).
Moreover, let ρj and σ be the maximum length a granule
can assume, respectively, along the j-th input dimension
and output dimension. Parameter ρj delimits the maximum
expansion region of trapezoidal membership functions around
their midpoints, see Fig. 1. In other words, the parameters
of a membership function, Aij , must not assume values lower
than mp(Aij) − ρj/2 nor values greater than mp(Aij) + ρj/2
at any time step. Different values of ρj produce different
representations of the same data set in different levels of
granularity. ρj ∀j and σ assume a single value in [0, 1]. If
ρj is equal to 0, then granules are not expanded. Learning
creates a new rule for each sample, which causes overfitting.
If ρj is equal to 1, then a single granule covers the entire
data domain. Evolvability is reached by choosing intermediate
values for ρj . The higher the value of ρj , the more compact
tends to be the structure of the resulting eFGP model.

A new granule, γc+1, is created by adding a rule, Rc+1, to
the current set of rules, R = {R1, ..., Rc}. Granule and rule
are created whenever either an input vector, x[h], contains at
least one element, x[h]

j , j = 1, ..., n, that is not in the expansion
region of Aij , i = 1, ..., c, or y[h] is not in the expansion region
of Bi, i = 1, ..., c. Formally, x[h]

j must belong to [mp(Aij) −
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ρ/2, mp(Aij) + ρ/2], j = 1, ..., n, to be considered by the i-th
granule. Additionally, the actual output, y[h], must belong to
[mp(Bi) − σ/2, mp(Bi) + σ/2]. Notice that Aij ∀j and Bi

have their parameters updated if (i) data samples are in their
expansion regions, and (ii) Ri is the most active rule.

The new granule, γc+1, has trapezoidal memberships func-
tions, Ac+1

j and Bc+1, in which

ac+1
j

= ac+1
j = ac+1

j = a
c+1
j = x

[h]
j , j = 1, ..., n, (11)

and

bc+1 = bc+1 = b
c+1

= b
c+1

= y[h]. (12)

Therefore, the new granule, γc+1, is initially a point in the
data space, the point (x, y). The coefficients of the complete
consequent function, pc+1, are

αc+1
j = 0, j 6= 0, and αc+1

0 = y[h]. (13)

Similarly, the coefficients of the incomplete functions, qc+1
θ ∀θ,

are initialized as

βc+1
jθ = 0, j 6= 0, and βc+1

0θ = y[h]. (14)

The adaptation of a rule Ri consists in: (i) expanding or
contracting the support and the core of Aij ∀j and Bi to
accommodate new data; and (ii) updating the coefficients of
complete and incomplete consequent functions, pi and qiθ∀θ.

If a data sample, (x, y)[h], belongs to the expansion region
of a granule, γi, then its membership functions are enlarged
to cover the sample. If the sample is within γi, its parameters
can be changed in the sense of contracting or expanding the
core of its membership functions. The following situations may
happen according to the position of a sample in relation to a
granule (refer to Fig. 1):

• If x[h]
j ∈ [mp(Aij)−

ρj
2 , a

i
j
]

then ai
j
(new) = x

[h]
j (support expansion)

• If x[h]
j ∈ [ai

j
, aij ]

then aij(new) = x
[h]
j (core expansion)

• If x[h]
j ∈ [aij ,mp(Aij)]

then aij(new) = x
[h]
j (core contraction) (15)

• If x[h]
j ∈ [mp(Aij), a

i
j ]

then aij(new) = x
[h]
j (core contraction)

• If x[h]
j ∈ [aij , a

i
j ]

then aij(new) = x
[h]
j (core expansion)

• If x[h]
j ∈ [a

i
j ,mp(Aij) +

ρj
2 ]

then aij(new) = x
[h]
j (support expansion)

When operating on core parameters, aij and aij , adjustment
of the midpoint of γi is required. Thus,

mp(Aij)(new) =
aij(new) + aij(new)

2
, (16)

j = 1, ..., n. Support contraction may be necessary as a
consequence of the midpoint adaptation. Thus,

• If mp(Aij)(new)− ρj
2 > ai

j

then ai
j
(new) = mp(Aij)(new)− ρj

2 (17)

• If mp(Aij)(new) +
ρj
2 < a

i
j

then aij(new) = mp(Aij)(new) +
ρj
2

Adaptation of output trapezoids, Bi, uses data y[h] and rela-
tions analogous to those of Eq. (15)–(17). Only the most active
granule, γi, is chosen to be adapted for a sample (x, y)[h].

All consequent functions, pi and qiθ ∀θ, are updated using
the Recursive Least Squares algorithm [42] in case Ri is the
most active rule for a complete x[h]. However, for a complete
x[h], coefficients βijθ, j = 0, 1, ..., n; j 6= θ, are computed
ignoring the attribute x[h]

θ , θ = 1, ..., n. For an incomplete x[h],
with a unique missing element, x[h]

θ , only the coefficients of
qiθ are updated. In case x[h] contains multiple missing values,
consequent coefficients are not updated.

After a number of time steps, hr, merging and deleting
rules may help to keep the fuzzy model succinct and updated.
Automatic procedures to merge and delete rules are described
as follows.

Granules may drift in the data space and become too close
to each other. In this case, they may represent a single pattern
so that merging them is important to keep a compact rule-
base. The granule that results from merging must respect
the limits imposed by ρj and σ. Neighbor granules, say γ1

and γ2, are merged into a single granule, γΨ, by combining
their trapezoidal membership functions through the convex hull
operator. Formally,

AΨ
j = ch(A1

j , A
2
j )

= (T (a1
j
, a2
j
), T (a1

j , a
2
j ), S(a1

j , a
2
j ), S(a

1
j , a

2
j )), (18)

j = 1, ..., n, and

BΨ = ch(B1, B2)

= (T (b1, b2), T (b1, b2), S(b
1
, b

2
), S(b

1
, b

2
)). (19)

Parameters of consequent functions of merged rules are ob-
tained from

αΨ
j =

α1
j + α2

j

2
, j = 0, ..., n, (20)

and

βΨ
jθ =

β1
jθ + β2

jθ

2
, j = 0, ..., θ − 1, θ + 1, ..., n; ∀θ. (21)

This strategy helps to reduce the number of rules and over-
lapped granules, covering similar information.

Concept change may cause granules and rules to become
inactive. In this case, the most recent data do not fall in the
region that a given granule covers for a number of iterations,
i.e., in the region where past data used to fall. The rule that
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governs the granule becomes useless in the current context.
Rules and granules are removed if they are not activated during
hr time steps. The purpose is to keep the fuzzy rule base
concise and formed only by elements that are useful to deal
with the current environment. Nevertheless, some applications
may require memorization of old and outdated events. In this
case, parameter hr may be set to ∞ to preserve the rules
forever. The value chosen for hr depends on how long we want
to keep inactive rules in the memory of the model. Both eFGP
parameters, ρj and hr, depend on the purpose of the model.
Different than ρj , parameter hr has a secondary influence on
the prediction performance.

The learning procedure to evolve an eFGP model is summa-
rized in Algorithm 1. Steps 3 and 22 emphasize that samples
are received and deleted one at a time – an essential feature
in data stream processing. |θ| denotes the number of missing
elements in a given x[h]. The resulting eFGP model is available
at any time. The model is robust to single and multiple missing
values per sample using a modified rule structure and an
inherent (nonlinear and nonstationary) mechanism of learning
and data imputation.

Algorithm 1 eFGP Online Incremental Learning
1: Define ρ, σ and hr;
2: while 1 do
3: Read input x[h], h = 1, ...;
4: //Prediction
5: if |θ| = 0 then
6: Give prediction ŷ using complete functions pi (Eq.

(3), (5), and (1));
7: else if |θ| = 1 then
8: Give prediction ŷ using reduced-term functions qiθ

(Eq. (4), (6), and (2));
9: else if |θ| > 1 then

10: Choose the most active rule for x[h] (Eq. (8));
11: Multiple imputation using the midpoints of the most

active granule for x[h] (Eq. (9) and (10));
12: Use complete functions pi to give the prediction ŷ

(Eq. (3), (5), and (1));
13: end if
14: Provide the granular prediction (Eq. (7));
15: //Model Adaptation (y[h] becomes available)
16: if (x[h]

j 6∈ [mp(Aij)− ρ/2, mp(Aij) + ρ/2], j = 1, ..., n,
OR y[h] 6∈ [mp(Bi)− σ/2, mp(Bi) + σ/2]) ∀i then

17: Create rule to accommodate (x, y)[h] (Eq. (11)-(14));
18: else
19: Adapt the most active granule (Eq. (15)-(17));
20: Adapt consequent coefficients of the most active rule

(Recursive Least Squares [42]);
21: end if
22: Delete sample (x, y)[h];
23: if h = zhr, z = 1, ... then
24: Delete inactive granules and rules;
25: Merge neighbor granules (Eq. (18)-(21));
26: end if
27: end while

IV. RESULTS AND DISCUSSIONS

A. Datasets and Evaluation Metrics
Benchmark datasets were chosen to evaluate the efficiency

of eFGP. The datasets contain no missing data in principle,
which is convenient for the purpose of the experiments and
comparative analyses. They are:

• Death Valley (Furnace Creek) weather dataset1. Records
of monthly mean temperature in degrees Celsius from
1901 to 2009 (1306 observations) is considered. A fixed
time window of 12 months, with no exogenous inputs,
is used for one-step prediction. In Death Valley, super-
heated moving air masses are trapped by surrounding
steep mountain ranges creating an extremely dry climate
with high temperatures. Reference [43] gives a complete
list of factors that produce high air temperatures and
temperature variations in Death Valley.

• Capital Bike Sharing dataset2. Located in Washington
D.C., this bike loan system contains 2-year information
(731 samples) of usage log data. 9 attributes are used:
season, month, holiday, weekday, weather situation, tem-
perature, apparent temperature, air humidity, and wind
speed. The count of bikes hired in a day is the output.
Sharing systems are a new way of renting bikes. Users
can take and return a bike in different positions of a
city. Apart from many applications of these systems,
the characteristics of real-time data – duration of travel,
departure and arrival position, and others – are attractive
as a virtual sensor network that can be used to analyze
mobility. Important events in a city can be detected by
monitoring these data. Bike sharing plays an important
role in traffic, environmental, and health issues.

• Airfoil Self-Noise dataset3. This dataset is related to a
series of aerodynamic and acoustic tests conducted in an
anechoic wind tunnel at the National Aeronautics and
Space Administration (NASA) using different NACA
0012 airfoils. This is a regression problem that contains
1503 samples, 5 attributes, namely, frequency (Hertz),
angle of attack (degree), chord length (meter), free-
stream velocity (meters per second), and suction-side
displacement thickness (meter); and an output, the scaled
sound pressure (decibel). Airfoil self-noise is due to the
interaction between an airfoil blade and the turbulence
produced in its own boundary layer and near wake [44].
It is the total noise produced when an airfoil encounters
smooth nonturbulent inflow. The interest behind devel-
oping fundamental understanding and prediction models
of the various self-noise mechanisms is motivated by its
importance to broadband helicopter rotor, wind turbine,
and airframe noises.

Prediction performance using the complete datasets and
MCAR and MAR data were assessed. For MCAR scenarios,
the chance of occurrence of missing values is equal among the
attributes. eFGP models were constructed and analyzed using

1https://www.nps.gov/deva/planyourvisit/weather.htm
2https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
3https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise
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datasets containing from 0% to 30% of missing values – a
range usually used in related studies [28][29][31]. For example,
for a dataset with 1000 entries, a random number between 1
and 1000 is chosen. After deleting the selected entry, a random
number between 1 and 999 is chosen, and so on until a given
percentage of values is missing.

For MAR data, a specific attribute is more inclined to receive
an empty reading in relation to the other attributes. In this case,
an attribute is taken at random to have its values more likely to
be missing. Prediction performance is evaluated for different
percentages of chance that the chosen attribute and the rest of
the attributes are missing. The cases are: (i) 5% – 1% (which
means 5% of chance that the value of the chosen attribute is
missing, and 1% of chance that each of the remaining values
is missing); (ii) 10% – 1%; (iii) 10% – 5%; (iv) 20% – 5%;
(v) 20% – 10%; (vi) 30% – 5%; and (vii) 30% – 10%. For
example, for the 5% – 1% case, and a dataset with 10 attributes
and 100 samples – a total of 1000 entries – a random number
between 1 and 1400 is chosen. Each of the 100 entries related
to the chosen attribute receives 5 numbers in the lottery, instead
of a single number of the entries related to the other attributes.

Model accuracy is quantified using the Root Mean Square
Error (RMSE) index given as

RMSE =
1

H

H∑
h=1

√
(ŷ[h] − y[h])2, (22)

where H is the number of iterations. The Non-Dimensional
Error (NDE) index,

NDE =
RMSE

std(y[h]∀h)
, (23)

where std(.) is the standard deviation, is useful to compare the
accuracy of a predictor in different data streams.

Additionally, eFGP provides granular outputs. The enclosure
of the numerical data given by eFGP linguistic consequents,
Bi, may be as important as pointwise estimates, ŷ, to assist
decision making in an application. Therefore, we address
numerical prediction accuracy, enclosures, and linguistic de-
scriptions in the experiments.

Alternative evolving methods, namely, evolving Granular
Neural Network (eGNN) [45], evolving Takagi-Sugeno (eTS)
[46], extended Takagi-Sugeno (xTS) [47], and Fuzzy-set-Based
evolving Modeling (FBeM) [42], are also evaluated either
assuming the datasets are complete or removing a fraction of
incomplete samples and replicating the last output.

B. eFGP Results for MCAR data
Average results for the Death Valley dataset considering

different fractions of MCAR values and 10 runs of the eFGP
learning algorithm for each case are shown in Table II. The
eFGP initial parameters are ρ = σ = 0.3, and hr = 150. As the
percentage of missing data increases, the error indices increase
monotonically, and the number of rules in the model structure
tends to increase. New granules and rules are needed to cover
incomplete samples since correlation information is partially
lost. As shown in Fig. 3, the eFGP monthly temperature
pointwise estimates for the roughest, 30% MCAR scenario,

track the peaks and valleys of the time series with reasonable
accuracy. Similarly, Fig. 4 shows part of the granular prediction
provided by eFGP (for a clearer view). Notice that the bounds
of the granular prediction given by the support of active
trapezoidal membership functions in the output domain enclose
the actual temperature. If lower values for the granularity, ρ
and σ, are chosen, then a narrower envelope can be achieved at
the price of additional fuzzy rules. A trade-off between model
compactness, interpretability of rules, pointwise accuracy, and
narrowness of the granular output should be evaluated depend-
ing on the purpose of the model.

TABLE II: eFGP results for the Death Valley weather station
assuming missing data of the MCAR type

MCAR RMSE NDE Mean # of rules
0% 0.0579 +/- 0.0018 0.2239 +/- 0.0070 13.3 +/- 0.1
1% 0.0600 +/- 0.0014 0.2322 +/- 0.0055 13.9 +/- 0.5
5% 0.0636 +/- 0.0018 0.2461 +/- 0.0072 20.5 +/- 0.9
10% 0.0640 +/- 0.0020 0.2474 +/- 0.0080 22.9 +/- 0.8
15% 0.0703 +/- 0.0041 0.2719 +/- 0.0158 27.7 +/- 1.1
20% 0.0818 +/- 0.0059 0.3163 +/- 0.0223 28.8 +/- 1.1
30% 0.1142 +/- 0.0057 0.4180 +/- 0.0222 28.1 +/- 2.3

Fig. 3: Pointwise eFGP prediction for the mean monthly
temperature of Death Valley considering 30% of MCAR values

Fig. 4: Granular eFGP estimation for the Death Valley monthly
mean temperature considering 30% of MCAR values
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eFGP rules can be accessed anytime. For example, an active
rule at h = 1295 is:

Ri: IF (x1 is [0.54, 0.59, 0.70, 0.79]) AND (x2 is [0.68, 0.68,
0.83, 0.87]) AND (x3 is [0.82, 0.83, 0.87, 0.95]) AND (x4 is
[0.78, 0.84, 0.89, 0.98]) AND (x5 is [0.73, 0.75, 0.80, 0.86])
AND (x6 is [0.57, 0.64, 0.76, 0.77]) AND (x7 is [0.49, 0.55,
0.61, 0.61]) AND (x8 is [0.19, 0.20, 0.34, 0.40]) AND (x9 is
[0.15, 0.19, 0.25, 0.26]) AND (x10 is [0.16, 0.22, 0.32, 0.39])
AND (x11 is [0.27, 0.34, 0.43, 0.47]) AND (x12 is [0.39, 0.39,
0.51, 0.61])

THEN (y is [0.51, 0.56, 0.72, 0.74]) AND (ŷ =
0.14+0.17x1−0.45x2 +0.64x3 +0.27x4−0.28x5 +0.07x6−
0.28x7 + 0.14x8− 0.09x9 + 0.58x10− 0.33x11 + 0.39x12 OR
ŷ = 0.36 − 0.44x2 + 0.55x3 + 0.58x4 − 0.43x5 − 0.07x6 −
0.24x7 + 0.11x8 + 0.19x9 + 0.48x10− 0.56x11 + 0.32x12 OR
ŷ = 0.20 + 0.16x1 + 0.45x3 − 0.01x4 − 0.55x5 + 0.39x6 −
0.18x7 + 0.20x8− 0.11x9 + 0.82x10− 0.75x11 + 0.45x12 OR
ŷ = 0.64 − 0.11x1 + 0.35x2 + 0.29x4 − 0.32x5 + 0.25x6 −
0.31x7 + 0.22x8 + 0.40x9 + 1.40x10− 1.76x11− 0.13x12 OR
ŷ = 0.02 + 0.27x1 − 0.32x2 + 0.64x3 − 0.27x5 + 0.25x6 −
0.28x7 + 0.18x8− 0.28x9 + 0.72x10− 0.30x11− 0.45x12 OR
ŷ = 0.09 + 0.21x1 − 0.53x2 + 0.64x3 + 0.26x4 − 0.01x6 −
0.39x7 + 0.15x8− 0.14x9 + 0.72x10− 0.28x11 + 0.24x12 OR
ŷ = 0.16 + 0.15x1 − 0.51x2 + 0.65x3 + 0.35x4 − 0.23x5 −
0.30x7 + 0.13x8− 0.05x9 + 0.56x10− 0.31x11 + 0.35x12 OR
ŷ = 0.23 + 0.09x1 − 0.21x2 + 0.65x3 + 0.24x4 − 1.04x5 +
0.30x6 + 0.14x8− 0.03x9 + 0.20x10− 0.39x11 + 0.82x12 OR
ŷ = 0.38 − 0.09x1 − 1.06x2 + 0.81x3 + 1.13x4 − 0.39x5 −
0.55x6− 0.25x7 + 0.35x9− 0.11x10 + 0.01x11 + 0.38x12 OR
ŷ = 0.21 + 0.11x1 − 0.45x2 + 0.61x3 + 0.37x4 − 0.31x5 +
0.01x6− 0.27x7 + 0.13x8 + 0.56x10− 0.40x11 + 0.35x12 OR
ŷ = 0.18 + 0.09x1 − 0.68x2 + 0.82x3 + 0.55x4 − 0.70x5 −
0.05x6 − 0.13x7 + 0.07x8 + 0.01x9 + 0.01x11 + 0.70x12 OR
ŷ = 0.01 + 0.25x1 − 0.63x2 + 0.78x3 + 0.24x4 − 0.22x5 +
0.02x6 − 0.29x7 + 0.13x8 − 0.23x9 + 0.44x10 + 0.49x12 OR
ŷ = 0.22 + 0.12x1 − 0.51x2 + 0.52x3 + 0.41x4 + 0.18x5 −
0.13x6 − 0.47x7 + 0.14x8 + 0.03x9 + 0.91x10 − 0.55x11)

In case an ordered set of labels, such as ‘very cold’, ‘cold’,
‘warm’, ‘hot’ and ‘very hot’, is given to the antecedent and
consequent trapeziums of each attribute, then the model comes
with a level of interpretability as additional asset.

Results for the Capital bike sharing dataset are show in Table
III. The eFGP initial parameters are ρ = σ = 0.30, and hr =
50. A behavior similar to that observed in Table II for the error
indices is noticed in Table III. With the increase of the amount
of missing data, the error indices increase monotonically. The
number of fuzzy rules tends to increase.

Figure 5a depicts the numerical estimates of the total count
of hired bikes for the hardest, 30% MCAR, case. A seasonal
pattern (2 cycles) is noticed. The number of shared bikes tends
to reduce during the winters, as can be seen in the beginning of
the time series and after 365 days. The variable, but increasing,
trend over the two years is related to the popularization
of the loan service. This time series distinguishes from the
previously-analyzed weather time series mainly because its
cycles are longer, i.e., the system dynamics is slower at that
time granularity. From one side, a higher number of data

TABLE III: eFGP results for the Capital bike sharing dataset
assuming missing data of the MCAR type

MCAR RMSE NDE Mean # of rules
0% 0.1090 +/- 0.0015 0.4895 +/- 0.0068 10.4 +/- 0.1
1% 0.1153 +/- 0.0042 0.5178 +/- 0.0186 10.5 +/- 0.8
5% 0.1302 +/- 0.0039 0.5845 +/- 0.0178 8.9 +/- 0.2
10% 0.1403 +/- 0.0057 0.6303 +/- 0.0258 10.5 +/- 0.8
15% 0.1497 +/- 0.0102 0.6724 +/- 0.0459 12.1 +/- 0.4
20% 0.1559 +/- 0.0093 0.7002 +/- 0.0418 13.3 +/- 1.1
30% 0.1597 +/- 0.0098 0.7172 +/- 0.0444 21.8 +/- 2.2

samples per cycle can facilitate incremental learning. From the
other side, only two cycles with seemingly-different aspects
are available. Linear and non-adaptive models would certainly
have their performance reduced over time due to the changes.

An accurate tracking of the original data can be observed in
Fig. 5a by using the eFGP pointwise ŷ. Learning and online
development of rules were key points to keep a reasonable
prediction accuracy over time. Figure 5b shows the evolution
of the eFGP rule-base. The granular prediction of the time
series, given by the support of active trapezoidal membership
functions, is essentially similar to that shown in Fig. 4. The
bounds give a range of values around the pointwise prediction,
which may be interpreted as a pessimistic and optimistic
amount of bike loans in the next day. This may help decision
making regarding transfer bikes to different service points,
establish new service points, and schedule maintenance.

An example of active rule at h = 731 is:

Ri: IF (x1 is [0.66, 0.66, 0.66, 0.66]) AND
(x2 is [0.75, 0.75, 0.75, 0.75]) AND
(x3 is [0.00, 0.00, 0.00, 0.00]) AND
(x4 is [0.43, 0.57, 0.57, 0.71]) AND
(x5 is [0.00, 0.00, 0.00, 0.00]) AND
(x6 is [0.55, 0.62, 0.74, 0.77]) AND
(x7 is [0.53, 0.57, 0.75, 0.77]) AND
(x8 is [0.42, 0.51, 0.61, 0.64]) AND
(x9 is [0.61, 0.64, 0.79, 0.86]),

which means if season (x1) is fall, month (x2) is September,
holiday (x3) is false, weekdays (x4) from Tuesday to Thursday,
weather (x5) is clear, temperature (x6) and apparent temper-
ature (x7) are high, air humidity (x8) is moderate, and wind
speed (x9) is high,

THEN (y is [0.63, 0.85, 0.85, 0.91]) AND
(ŷ = 0.05+0.44x1 +0.11x2 +0.00x3 +0.67x4 +0.24x5 +

0.45x6 + 0.49x7 − 1.17x8 + 0.02x9 OR
ŷ = 0.39+0.35x2 +0.00x3 +0.11x4 +1.04x5 +0.57x6 +

0.49x7 − 1.40x8 + 0.68x9 OR
ŷ = 0.13+0.45x1 +0.00x3 +0.72x4 +0.20x5 +0.43x6 +

0.47x7 − 1.17x8 + 0.04x9 OR
ŷ = 0.05+0.44x1 +0.11x2 +0.67x4 +0.24x5 +0.45x6 +

0.49x7 − 1.17x8 + 0.02x9 OR
ŷ = 0.29+0.11x1 +0.67x2 +0.00x3 +1.03x5 +0.61x6 +

0.55x7 − 1.37x8 − 0.08x9 OR
ŷ = −0.07+0.55x1+0.01x2−0.00x3+0.85x4+0.46x6+

0.46x7 − 1.10x8 − 0.02x9 OR
ŷ = 0.12+0.46x1 +0.02x2−0.00x3 +0.72x4 +0.24x5 +

0.85x7 − 1.16x8 + 0.02x9 OR
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(a) Numerical prediction of hired bikes

(b) Evolution of the fuzzy rule base

Fig. 5: (a) Daily prediction of the number of hired bikes of the
Capital sharing system in Washington D.C. considering eFGP
and 30% of MCAR data; and (b) evolution of the number of
eFGP rules over time

ŷ = 0.17+0.44x1−0.03x2 +0.00x3 +0.70x4 +0.17x5 +
0.94x6 − 1.19x8 + 0.03x9 OR

ŷ = −3.28+1.91x1+0.44x2−0.00x3+2.83x4−2.94x5+
0.17x6 + 1.10x7 − 0.50x9 OR

ŷ = −0.41+0.58x1+0.23x2−0.00x3+0.87x4−0.15x5+
1.00x6 + 0.10x7 − 1.04x8)

The consequent part indicates that the number of hired bikes
will be high, and that the numerical prediction is provided by
one of the 10 equations depending whether the input sample
is complete or incomplete.

Results for the airfoil self-noise dataset and MCAR data
are summarized in Table IV. The eFGP parameters are ρ =

σ = 0.1, and hr = 48. As the percentage of MCAR data
increases, a monotonic increasing of the amount of fuzzy
rules and error values are seen. The average RMSE and NDE
indices are higher in this problem not only because the standard
deviation of the data is higher (as revealed by the greater
NDE/RMSE value), but also due to a lower correlation between
the attributes and the predicted sound pressure, and to a
relatively faster and irregular dynamical behavior. A stochastic
component is inherit to the data, and this is reflected on the
actual and predicted pressures, as shown in Fig. 6a by the rapid
amplitude variations. In spite of the noise, we notice that the
eFGP approximation follows the trend of the data, and captures
the changes in the standard deviation.

TABLE IV: Summary of eFGP results for the airfoil self-noise
dataset and MCAR values

MCAR RMSE NDE Mean # of rules
0% 0.1114 +/- 0.0003 0.6059 +/- 0.0017 3.4 +/- 0.1
1% 0.1174 +/- 0.0085 0.6381 +/- 0.0465 5.5 +/- 0.4
5% 0.1251 +/- 0.0056 0.6801 +/- 0.0305 11.5 +/- 1.4
10% 0.1436 +/- 0.0046 0.7808 +/- 0.0249 12.2 +/- 0.9
15% 0.1476 +/- 0.0062 0.8022 +/- 0.0034 12.9 +/- 0.9
20% 0.1502 +/- 0.0073 0.8164 +/- 0.0397 20.4 +/- 1.6
30% 0.1674 +/- 0.0064 0.9102 +/- 0.0351 20.5 +/- 0.6

Figure 6b shows the evolution of the number of eFGP rules
for a typical run of the learning algorithm. Initially, a number
of rules is created to accommodate never-before-seen data.
After about 50 iterations, the model structure becomes more
stable and parameter adaptation prevails over rule creation.
The average number of rules is 15.7 on the simulation shown
in Fig. 6b. An interesting event to be observed happens at
iteration 720. A sudden reduction of the standard deviation of
the data required a new incremental growth of the rule base.
In other words, about 6 rules were added to the eFGP model
for an appropriate handling of the concept shift.

An example of rule at h = 1502 is:

Ri: IF (x1 is [0.00, 0.02, 0.10, 0.10]) AND
(x2 is [0.12, 0.15, 0.15, 0.21]) AND
(x3 is [0.25, 0.27, 0.27, 0.29]) AND
(x4 is [0.00, 0.09, 0.10, 0.10]) AND
(x5 is [0.40, 0.43, 0.46, 0.50])

THEN (y is [0.55, 0.56, 0.59, 0.65]) AND
(ŷ = 0.53− 1.76x1− 0.49x2 + 0.14x3 + 0.75x4 + 0.14x5

OR
ŷ = 0.24− 0.31x2 + 0.06x3 + 0.75x4 + 0.33x5 OR
ŷ = 0.14− 1.24x1 + 0.04x3 + 0.73x4 + 0.20x5 OR
ŷ = 0.57− 1.76x1 − 0.49x2 + 0.75x4 + 0.14x5 OR
ŷ = 0.96− 1.76x1 − 0.39x2 + 0.26x3 − 0.39x5 OR
ŷ = 0.69− 2.07x1 − 0.67x2 + 0.19x3 + 0.66x4)

The rule can be read as: if frequency (x1) is very low, angle
of attack (x2) is small, chord length (x3) is small, free-
stream velocity (x4) is very low, and suction side displacement
thickness (x5) is medium-small, then sound pressure (y) is
medium-high.
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(a) Numerical approximation of the sound pressure level

(b) Evolution of the fuzzy rule base

Fig. 6: eFGP (a) numerical approximation of the sound pres-
sure for the Airfoil problem; and (b) evolution of the number
of rules over time considering 30% of MCAR data

C. eFGP Results for MAR data
Experiments with MAR data were conducted for the same

datasets. Table V summarizes the results. In general, the RMSE
and NDE indices vary irregularly with the increase of MAR
values – although a modest performance reduction is observed
from the extreme cases. The size of the rule base increases
with the amount of MAR data in most cases. However, the
increase of the model structure is not in the same proportion
as that observed for MCAR data. MCAR data impose more
challenges to incremental modeling. In other words, if readings
from a single attribute become partially available for some
reason, the eFGP learning algorithm still benefits from the
information of the other attributes to keep its prediction
accuracy. Contrariwise, if the availability of readings of all

attributes are limited, then the algorithm uses approximations
from nearest granules to provide predictions.

The result for Death Valley, shown in Table V, portrays
that the maximum difference in average RMSE between the
easiest (5%-1%) and the roughest (30%-10%) MAR cases is
0.0074 – a 10.9% increase. For the bike sharing and airfoil
sound pressure problems, the same difference is of 13.9% and
10.7%, respectively. While 30% of missing values can be quite
detrimental to other prediction models (as will be empirically
shown in the next section), eFGP copes with MAR values in
an evolving fashion, thus keeping reasonable RMSE and NDE
rates. Notice also in Table V that the standard deviation of
the error indices for 10 runs of the algorithm for each MAR
case is minimal. The eFGP learning approach has provided
prediction models that are robust to MAR values.

TABLE V: eFGP results for the Death Valley weather station,
hired bikes, and airfoil self-noise considering MAR data

Death Valley monthly weather
MAR RMSE NDE Mean # of rules

5% – 1% 0.0604 +/- 0.0021 0.2335 +/- 0.0082 14.5 +/- 0.9
10% – 1% 0.0611 +/- 0.0010 0.2364 +/- 0.0041 14.4 +/- 0.4
10% – 5% 0.0637 +/- 0.0031 0.2464 +/- 0.0122 20.4 +/- 0.5
20% – 5% 0.0663 +/- 0.0029 0.2566 +/- 0.0112 19.7 +/- 1.6
30% – 5% 0.0632 +/- 0.0015 0.2442 +/- 0.0059 20.7 +/- 0.8

20% – 10% 0.0651 +/- 0.0034 0.2516 +/- 0.0132 29.9 +/- 1.2
30% – 10% 0.0678 +/- 0.0019 0.2622 +/- 0.0075 22.7 +/- 1.2

Number of hired bikes in Washington D.C.
MAR RMSE NDE Mean # of rules

5% – 1% 0.1216 +/- 0.0066 0.5463 +/- 0.0298 8.0 +/- 0.4
10% – 1% 0.1191 +/- 0.0049 0.5436 +/- 0.0224 7.8 +/- 0.3
10% – 5% 0.1336 +/- 0.0064 0.6001 +/- 0.0287 9.4 +/- 0.6
20% – 5% 0.1262 +/- 0.0048 0.5667 +/- 0.0215 8.9 +/- 0.7
30% – 5% 0.1360 +/- 0.0052 0.6106 +/- 0.0234 8.9 +/- 0.3

20% – 10% 0.1362 +/- 0.0056 0.6116 +/- 0.0253 10.6 +/- 0.9
30% – 10% 0.1383 +/- 0.0041 0.6210 +/- 0.0186 10.3 +/- 0.5

Airfoil sound pressure
MAR RMSE NDE Mean # of rules

5% – 1% 0.1246 +/- 0.0127 0.6776 +/- 0.0694 4.1 +/- 0.1
10% – 1% 0.1200 +/- 0.0046 0.6523 +/- 0.0254 3.9 +/- 0.1
10% – 5% 0.1210 +/- 0.0060 0.0658 +/- 0.0329 6.8 +/- 0.6
20% – 5% 0.1242 +/- 0.0056 0.6752 +/- 0.0306 11.1 +/- 1.1
30% – 5% 0.1205 +/- 0.0022 0.6552 +/- 0.0120 11.3 +/- 0.7
20% – 10% 0.1315 +/- 0.0040 0.7148 +/- 0.0219 12.4 +/- 1.0
30% – 10% 0.1344 +/- 0.0032 0.7309 +/- 0.0175 11.6 +/- 0.8

In summary, eFGP has shown to be able to handle non-
stationary data streams containing MCAR and MAR values
at different rates. The behavior of the algorithm has been
stable in different real missing-data scenarios. MAR data are
more easily dealt with by the algorithm compared to MCAR
data. The latter requires a greater number of information
granules and a larger expansion of the fuzzy rule base whereas
parametric adaptation prevails in the former case.

D. Comparing Evolving Intelligent Models
eFGP models are compared with evolving Granular Neural

Network (eGNN) [45], evolving Takagi-Sugeno (eTS) [46],
extended Takagi-Sugeno (xTS) [47], and Fuzzy-set-Based
evolving Modeling (FBeM) [42]. In the Death Valley problem,
eFGP uses ρ = σ = 0.3, and hr = 150. eGNN uses min-max
neurons, ρ[0] = 0.2, hr = 80, ζ = 0.9 (a constant for updating
connection weights), and η = 0.5 (a threshold for the number
of neurons created in hr time steps). eTS uses Ω = 350, and
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radius length, r = 0.7; xTS employs Ω = 350; and FBeM
uses ρ = σ = 0.3, and hr = 150. These parameters provided
the highest average-accuracy of each method based on 10 runs.
As other methods are not supplied with mechanisms to impute
missing data, a zero-order-hold approach is employed, i.e., the
last prediction is replicated.

Figure 7 depicts the RMSE indices of the predictors for
Death Valley using different proportions of missing values.
Clearly, the increasing rate of eFGP is less than those of the
other models. eFGP takes full advantage of the information
within incomplete samples. The correlation matrix between at-
tributes becomes more distorted if entire samples are removed
from the stream. This more-strongly hampers the ability of the
other models to give accurate predictions. Figure 7b highlights
that the percentage of MAR values related to the attributes with
less missing values is more influential to eTS, xTS, eGNN,
and FBeM. The eFGP approach has demonstrated robustness
to MAR data. Table VI gives a summary of the results achieved
for all methods and situations illustrated in Fig. 7.

For the bike sharing dataset, eFGP models using ρ = σ =
0.5, and hr = 50 were compared to: eGNN using min-max

(a) Missing completely at random data (MCAR)

(b) Missing at random data (MAR)

Fig. 7: Performance comparison on the prediction of the Death
Valley monthly temperature

TABLE VI: Summary results for Death Valley
Complete dataset

Method RMSE NDE # of Rules
eFGP 0.0579 +/- 0.0018 0.2239 +/- 0.0070 13.3 +/- 0.1
eGNN 0.0532 +/- 0.0019 0.2055 +/- 0.0071 14.0 +/- 0.8
eTS 0.0730 +/- 0.0000 0.2822 +/- 0.0000 11.0 +/- 0.0
xTS 0.0669 +/- 0.0000 0.2586 +/- 0.0000 8.0 +/- 0.0

FBeM 0.0579 +/- 0.0018 0.2239 +/- 0.0070 13.3 +/- 0.1
Average results for MCAR scenarios

Method RMSE NDE # of Rules
eFGP 0.1142 +/- 0.0057 0.4180 +/- 0.0222 28.1 +/- 2.3
eGNN 0.3796 +/- 0.0237 1.4673 +/- 0.0917 8.9 +/- 0.7
eTS 0.4180 +/- 0.0095 1.6153 +/- 0.0368 6.4 +/- 0.9
xTS 0.4178 +/- 0.0432 1.6149 +/- 0.1670 3.8 +/- 1.5

FBeM 0.4107 +/- 0.0182 1.5873 +/- 0.0702 9.8 +/- 0.9
Average results for MAR scenarios

Method RMSE NDE # of Rules
eFGP 0.0678 +/- 0.0019 0.2622 +/- 0.0075 22.7 +/- 1.2
eGNN 0.2906 +/- 0.0088 1.1233 +/- 0.0340 14.8 +/- 0.7
eTS 0.3150 +/- 0.0160 1.2174 +/- 0.0618 8.6 +/- 1.1
xTS 0.3106 +/- 0.0138 1.2004 +/- 0.0536 5.4 +/- 1.1

FBeM 0.3126 +/- 0.0168 1.2081 +/- 0.0651 12.9 +/- 0.4

neurons, ρ[0] = 0.5, hr = 50, ζ = 0.9, and η = 1.5; eTS
with Ω = 350, and r = 0.3; xTS using Ω = 350; and FBeM
with ρ = σ = 0.5, and hr = 50. Figure 8a shows that eFGP is
more robust than the other methods for MCAR data across the
range of analyzed values. xTS presented the lowest RMSE for
the complete dataset. However, removing a small percentage
of random values from the data stream is enough for eFGP to
overcome xTS. MAR results are shown in Fig. 8b. Notably,
comparing the extreme 5–1 and 30–10 cases, eFGP is the
model with the smallest growth rate. This argues in favor of its
greater robustness. The percentage of missing values related to
the attributes with less missing values is more influential to the
predictions. Table VII summarizes the average accuracy and
number of rules of the predictors. xTS and eFGP are the most
accurate predictors of the amount of loans when the dataset is
complete and incomplete, respectively.

TABLE VII: Summary results for the bike loans
Complete dataset

Method RMSE NDE # of Rules
eFGP 0.1090 +/- 0.0015 0.4895 +/- 0.0068 10.4 +/- 0.1
eGNN 0.1471 +/- 0.0007 0.6602 +/- 0.0032 11.0 +/- 0.1
eTS 0.1745 +/- 0.0000 0.7829 +/- 0.0000 16.0 +/- 0.0
xTS 0.1078 +/- 0.0000 0.4854 +/- 0.0000 16.0 +/- 0.0

FBeM 0.1090 +/- 0.0015 0.4895 +/- 0.0068 10.4 +/- 0.1
Average results for MCAR scenarios

Method RMSE NDE # of Rules
eFGP 0.1597 +/- 0.0098 0.7172 +/- 0.0444 21.8 +/- 2.2
eGNN 0.2168 +/- 0.0153 0.9720 +/- 0.0665 11.7 +/- 1.3
eTS 0.2967 +/- 0.0621 1.3312 +/- 0.2788 10.8 +/- 2.9
xTS 0.2370 +/- 0.0218 1.0630 +/- 0.0980 6.4 +/- 1.8

FBeM 0.2180 +/- 0.0170 0.9816 +/- 0.0664 11.6 +/- 1.2
Average results for MAR scenarios

Method RMSE NDE # of Rules
eFGP 0.1383 +/- 0.0041 0.6210 +/- 0.0186 10.3 +/- 0.5
eGNN 0.1515 +/- 0.0103 0.6801 +/- 0.0464 11.7 +/- 1.3
eTS 0.2055 +/- 0.0477 0.9219 +/- 0.2140 16.0 +/- 4.9
xTS 0.1661 +/- 0.0221 0.7451 +/- 0.0989 12.0 +/- 1.6

FBeM 0.1650 +/- 0.0121 0.7400 +/- 0.0423 11.7 +/- 1.4

In the airfoil sound pressure problem, eFGP uses ρ = σ =
0.6, and hr = 48; eGNN employs min-max neurons, ρ[0] =
0.2, hr = 80, ζ = 0.9, and η = 1.5; eTS uses Ω = 100, and
r = 0.9; xTS utilizes Ω = 100; and FBeM uses ρ = σ = 0.6,
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(a) Missing completely at random data (MCAR)

(b) Missing at random data (MAR)

Fig. 8: Performance comparison on the prediction of the Bike
sharing dataset

and hr = 48. Figure 9 shows the average performance of
the models for MCAR and MAR cases. An increasing trend is
noticed for all models. eFGP has been the most robust predictor
in all scenarios. Although eTS and xTS are more accurate for
the complete dataset, when about 3% of the data, in general,
is missing, eFGP begins to prevail.

Table VIII compares error indices and number of rules. Even
though eFGP uses only 3.4 granules against 9 and 12 clusters
of eTS and xTS for the complete data, its error indices are close
to those of eTS and xTS. Malfunction of sensors or failures in
data communication can quickly deteriorate the performance
of evolving models, as shown in the table for the missing-data
cases. eFGP overcame eGNN, eTS, xTS and FBeM by 23.4%,
31.6%, 30.7%, and 21.2% in MCAR scenarios, and by 20.6%,
17.0%, 17.0%, and 17.9% in MAR settings.

The average time taken by eFGP to process a sample on
a Intel i7 3.6GHz processor with 16GB RAM using Python-
Ubuntu 18.04 on Windows 10 was 20.5, 11.6, and 9.3 millisec-
onds (ms), respectively, for the Death Valley, Bike Sharing, and
Self-Noise datasets. FBeM spent 17.8, 10.7, and 8.4 ms; eTS
spent 24.2, 15.5, and 9.9 ms; xTS spent 17.2, 10.9, and 8.6
ms; and eGNN consumed 23.9, 16.5, and 11.0 ms. eFGP is
competitive with the other methods in processing time.

(a) Missing completely at random data (MCAR)

(b) Missing at random data (MAR)

Fig. 9: Performance comparison on the prediction of the Airfoil
self-noise dataset

TABLE VIII: Summary results for the Airfoil sound pressure
Complete dataset

Method RMSE NDE # of Rules
eFGP 0.1114 +/- 0.0003 0.6059 +/- 0.0017 3.4 +/- 0.1
eGNN 0.1259 +/- 0.0003 0.6839 +/- 0.0019 14.9 +/- 0.6
eTS 0.1006 +/- 0.0000 0.5467 +/- 0.0000 9.0 +/- 0.0
xTS 0.1050 +/- 0.0000 0.5705 +/- 0.0000 12.0 +/- 0.0

FBeM 0.1114 +/- 0.0003 0.6059 +/- 0.0017 3.4 +/- 0.1
Average results for MCAR scenarios

Method RMSE NDE # of Rules
eFGP 0.1674 +/- 0.0064 0.9102 +/- 0.0351 20.2 +/- 0.6
eGNN 0.2158 +/- 0.0058 1.1725 +/- 0.0316 45.5 +/- 1.4
eTS 0.2449 +/- 0.0183 1.3307 +/- 0.0994 12.0 +/- 5.3
xTS 0.2416 +/- 0.0199 1.3130 +/- 0.1079 9.2 +/- 1.9

FBeM 0.2125 +/- 0.0141 1.1673 +/- 0.0329 45.5 +/- 1.4
Average results for MAR scenarios

Method RMSE NDE # of Rules
eFGP 0.1344 +/- 0.0032 0.7309 +/- 0.0175 11.6 +/- 0.8
eGNN 0.1693 +/- 0.0060 0.9197 +/- 0.0324 26.0 +/- 2.2
eTS 0.1620 +/- 0.0106 0.8804 +/- 0.0575 9.4 +/- 0.6
xTS 0.1620 +/- 0.0068 0.8801 +/- 0.0367 9.4 +/- 2.3

FBeM 0.1638 +/- 0.0076 0.9129 +/- 0.0336 26.0 +/- 2.3

E. Statistical Hypothesis Testing
Balanced one-way ANalysis Of VAriance (ANOVA) [48]

compares evolving models under the same roof, regardless of
the application. ANOVA determines if the mean accuracies of a
pair of methods are statistically different. The null hypothesis
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is that the mean accuracy of the methods is essentially the
same. A cutoff value, p, less than 0.05 indicates that the
accuracy of at least one of the methods is significantly different
from the others. Considering the results of all experiments with
complete datasets, a p = 0.7372 was obtained and, therefore,
the null hypothesis holds true. In other words, any method,
eFGP, eGNN, eTS, xTS, and FBeM may provide the best
estimates for a particular stream if no data is missing. eFGP
is competitive with state-of-the-art evolving methods.

From the results of the MCAR and MAR experiments,
the values p = 0.0015 and p = 0.0031, respectively, were
obtained. The mean accuracy of the methods is not all the
same, i.e., the null hypothesis is rejected. The Tukey Honestly
Significant Difference test [48] was performed to compare
pairs of methods. The Tukey test is optimal for balanced one-
way ANOVA. Table IX shows the results of the test for a 95%
confidence interval (CI) for the true difference of the means.

TABLE IX: Tukey Test Results

Tukey Test results with complete dataset
Method 1 Method 2 CI LB Diff of Means CI UB

eFGP eGNN -0.2090 -0.0464 0.1163
eFGP eTS -0.2230 -0.0604 0.1023
eFGP xTS -0.1621 0.0006 0.1632
eFGP FBeM -0.1626 0 0.1626
eGNN eTS -0.1767 -0.0140 0.1486
eGNN xTS -0.1157 0.0469 0.2096
eGNN FBeM -0.1163 0.0464 0.2090
eTS xTS -0.1017 0.0610 0.2236
eTS FBeM -0.1023 0.0604 0.2230
xTS FBeM -0.1632 -0.0006 0.1621

Tukey Test results for MCAR scenarios
Method 1 Method 2 CI LB Diff of Means CI UB

eFGP eGNN -0.6443 -0.3229 -0.0014
eFGP eTS -0.7798 -0.4584 -0.1369
eFGP xTS -0.7216 -0.4001 -0.0786
eFGP FBeM -0.6699 -0.3485 -0.0270
eGNN eTS -0.4569 -0.1355 0.1860
eGNN xTS -0.3987 -0.0772 0.2442
eGNN FBeM -0.3470 -0.0256 0.2959
eTS xTS -0.2632 0.0583 0.3797
eTS FBeM -0.2116 0.1099 0.4314
xTS FBeM -0.2698 0.0516 0.3731

Tukey Test results for MAR scenarios
Method 1 Method 2 CI LB Diff of Means CI UB

eFGP eGNN -0.4529 -0.2300 -0.0071
eFGP eTS -0.5141 -0.2913 -0.0684
eFGP xTS -0.4745 -0.2516 -0.0287
eFGP FBeM -0.4808 -0.2580 -0.0351
eGNN eTS -0.2842 -0.0613 0.1616
eGNN xTS -0.2445 -0.0216 0.2012
eGNN FBeM -0.2509 -0.0280 0.1949
eTS xTS -0.1832 0.0396 0.2625
eTS FBeM -0.1896 0.0333 0.2562
xTS FBeM -0.2292 -0.0063 0.2165

LB: Lower Bound; UB: Upper Bound; CI: Confidence Interval.

A negative or positive ‘difference of means’ denotes that the
first or second method, respectively, outperformed the other
on that scenario. However, if the confidence interval [LB, UB]
(see Table IX) contains the value 0, then the difference between

the methods is not significant at the 0.05 level. In this case, for
applications other than those evaluated, any of the methods can
be better than the other, and both should ideally be examined.
Notice from the MAR and MCAR scenarios in Table IX that
eFGP is statistically superior. eGNN, eTS, xTS, and FBeM are
similar among themselves in missing-data scenarios.

In addition to the preeminence of eFGP in terms of overall
accuracy in missing-data context, the granular approximation
of the underlying time series or data stream, and the linguistic
description associated to fuzzy granules are distinctive features
to consider the eFGP approach.

V. CONCLUSION

In this contribution we shed light on the question of missing
values in nonstationary data streams. We described an evolving
granular fuzzy-rule-based modeling method for function ap-
proximation and time series prediction in online settings where
values may be missing at random and missing completely at
random. eFGP models can handle single and multiple missing
values per sample due to its constructive features, namely, (i) a
modified rule structure that includes reduced-term consequent
functions, and conjunctive and disjunctive operators; and (ii)
a learning algorithm customized to such modified structure,
which uses partial similarity, and time-varying granules.

An extensive set of experimental results on actual weather,
social service, and engineering applications considering from
1% to 30% of missing values has shown that the eFGP
approach outperforms other evolving fuzzy and neuro-fuzzy
modeling methods that resort to sample deletion and replica-
tion of the last output. Moreover, the results are statistically
significant on MAR and MCAR scenarios according to an
ANOVA-Tukey test. A particular characteristic of eFGP con-
cerns the provision of a granular enclosure of the underlying
time series or data stream, which may assist decision making
and have a variety of interpretations in different areas. The
eFGP approach may inspire fundamental modifications of
other computational-intelligence methods to include the ca-
pability of dealing with missing data and providing numerical
and granular estimates in a nonlinear and time-varying way,
considering the properties and changes of data streams.

Further work will discuss missing-data imputation in semi-
supervised multiclass classification of data streams. The de-
velopment of fuzzy granules with different geometries and
incremental adaptation of the parameters of aggregation op-
erators will be discussed considering streams of nonstationary
data subject to missing values. Imputation of nominal values,
and imputation in information-retrieval and natural-language-
processing contexts will also be discussed.
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