Incremental Missing-Data Imputation for Evolving Fuzzy Granular Prediction

Cristiano Garcia, Daniel Leite and Igor Škrjanc

Abstract-Missing values are common in real-world data stream applications. This paper proposes a modified evolving granular fuzzy rule-based model for function approximation and time series prediction in an online context where values may be missing. The fuzzy model is equipped with an incremental learning algorithm that simultaneously imputes missing data and adapts model parameters and structure over time. The evolving Fuzzy Granular Predictor (eFGP) handles single and multiple missing values on data samples by developing reducedterm consequent polynomials and utilizing time-varying granules. Missing at random (MAR) and missing completely at random (MCAR) values in nonstationary data streams are approached. Experiments to predict monthly weather conditions, the number of bikes hired on a daily basis, and the sound pressure on an airfoil from incomplete data streams show the usefulness of eFGP models. Results were compared with those of stateof-the-art fuzzy and neuro-fuzzy evolving modeling methods. A statistical hypothesis test shows that eFGP outperforms other evolving intelligent methods in online MAR and MCAR settings, regardless of the application.

Keywords—Evolving Intelligence, Fuzzy System, Data Stream, Incremental Learning, Missing-Data Imputation.

I. INTRODUCTION

Knowledge discovery from data streams is helpful for many practical purposes. Detecting frequent patterns, trends, seasonalities, nonstationarities may help human decision-making in a variety of situations, applications and endeavors. Data mining, machine learning and computational intelligence methods have been applied to the purpose of finding useful information in sets of data [1]. These methods generally fit data patterns into classification or prediction models.

Data sources may be static or time-varying depending if their probability distributions change over time. In this context, *static* very often means that the source remains nearly unchanged so that data collected in a specific time interval are sufficient to represent reasonably well the behavior of the process or phenomenon in the future. Conversely, *timevarying* means that the data distribution is subject to variations (concept change), and online learning and model adaptation are necessary.

Models to deal with time-varying data streams must take into consideration that: (i) samples cannot be permanently stored; (ii) data sets are potentially unbounded; (iii) processing time should scale linearly (or at least polynomially) with the number of samples, attributes and model parameters; and (iv) the data distribution may change gradually (concept drift) or abruptly (concept shift) at any time, or new patterns may emerge [1]–[12]. A survey on evolving fuzzy and neuro-fuzzy systems that deal with these fundamental issues and with some additional challenges of online-modeling and learning scenarios was recently published in [13].

1

The vast majority of stream-oriented learning methods require the values of all attributes to be available to work properly. However, missing values are common in real-world applications. Missing data arise due to incomplete observations, data transfer problems, malfunction of sensors or devices, incomplete information obtained from experts or on public surveys, among others [14][15]. Three ways of treating missing data can be mentioned [16]: (i) discard samples, or even attributes, with many missing data; (ii) impute values by maximum likelihood and parameter estimation procedures; and (iii) identify relationships among attributes and from previous values of an attribute to estimate new values.

Statistical and intelligent methods have been proposed to deal with missing data, especially in offline settings, where historical datasets are available [17][18]. General methods entail deleting samples that contain one or more missing values, deleting attributes with more than a predefined percentage of their values missing, or imputing zeros, mean, or median for an attribute. After imputation, the complete, approximated, dataset is used for learning, classification, or prediction [15][17][19]. Model-based imputation methods provide a nonlinear way of handling missing data. These methods very often outperform general and independent methods [16][20]. In [21], for example, several standalone imputation methods were overcome in a number of datasets and situations by imputation methods used in conjunction with a given predictive model.

Evolving systems are intelligent systems that, differently from adaptive and machine-learning systems, learn their parameters and structure simultaneously using a stream of data [1][13][22][23]. The structural elements of evolving systems can be artificial neurons, fuzzy rules, data clusters, data clouds, sub-trees, or information granules [3][13][23]. To deal with nonlinear and time-varying processes, evolving models should be updated through the use of online learning algorithms so that eventually-large data flows can be processed in real time. The use of offline methods in this kind of problem is infeasible due to the unavailability of data to offline training, and tight time and memory constraints [1][13]. In this paper, missing values in nonstationary data streams is for the first time considered by means of an evolving approach.

Manuscript received on Sept. 8, 2018; revised on Mar. 29 and Aug. 7, 2019. Cristiano Garcia and Daniel Leite are with the Department of Automatics, Federal University of Lavras, Brazil. Igor Škrjanc is with the Faculty of Electrical Engineering, University of Ljubljana, Slovenia. E-mails: cristiano.garcia@ufla.br, daniel.leite@ufla.br, igor.skrjanc@fe.uni-lj.si.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

An evolving, fuzzy-rule-based model, modified to include an incremental learning algorithm for missing-data imputation and model adaptation, is proposed in this study. The result, which we call the evolving Fuzzy Granular Predictor (eFGP), is useful for function approximation and prediction problems. Different from many statistical and machine-learning methods, eFGP is suited for time-varying environments subject to concept drifts and shifts. Its rule base is built incrementally from scratch; meanwhile, the parameters of fuzzy granules and local linear functions are computed recursively based on data streams that may contain missing at random, MAR, and missing completely at random, MCAR, data. eFGP handles single missing values on data samples by developing reducedterm consequent polynomials. Additionally, multiple missing values on samples are dealt with using the midpoints of timevarying granules evolved in the data space.

A granule is a clump of entities that may originate at the numeric or granular level and are arranged together due to their similarity, proximity, functionality, or coherency [1] [24]. Information granulation means that, instead of dealing with detailed real-world data, the data are considered in a more abstract and conceptual perspective. The goal of a timevarying granule is to catch the essence of the most recent data in a concise and explainable manner. Whenever yes-or-no quantification of concepts becomes too restrictive, fuzzy sets offer the feature of describing granules whose constituting elements may belong only partially. Fuzzy sets avoid specifying solid borders between full belongingness and full exclusion by means of smooth transition boundaries [24].

The remainder of this paper is organized as follows. Section II presents essential notions of missing-data imputation and a literature review. Section III describes the eFGP approach, which differs from other evolving-intelligent approaches, because it addresses single and multiple MAR and MCAR values in data streams by means of reduced-term consequent polynomials and adaptive granules. Section IV presents prediction results, discussions, and comparisons to other evolving fuzzy and neuro-fuzzy methods. Section V presents the conclusion and discusses the outlook for further research.

II. CONTEXTUALIZATION OF MODEL-BASED IMPUTATION METHODS

A. Fundamental Concepts

Missing data is a common occurrence. A datum is missing if no value is available for the underlying attribute of a sample. There exist several ways to handle missing data. Some of the simplest ways are: (i) casewise deletion, where the whole observation is removed; (ii) replacing the missing value with either zero or the mean for the attribute; and (iii) estimating the missing value using a special type of model, known as an *imputation model* [20]. The first two options may be used if the number of missing values is small and/or the dataset is large enough that a few lost or approximated samples are relatively insignificant [18][20][25]. Both case deletion and imputation transform an incomplete dataset into a fullypopulated rectangular format.

Depending on the nature of the missing data, they can be classified as:

 Missing completely at random (MCAR): the propensity for a value to be missing is completely random, i.e., the probability of any value being missing is equal to the probability of any other value being missing;

2

- Missing at random (MAR): the propensity of the values of a specific attribute to be missing is higher than those of other attributes; e.g. a sensor is not working properly, or one of the questions in a survey is harder to answer than the others;
- Not missing at random (NMAR): missing values are dependent on other missing values; e.g., a sensor is not working properly in a portion of its range of values, or people tend not to answer a question in a survey if their depression level is high.

Slightly different definitions and interpretations may be found across research communities.

Data imputation should consider the nature of the data. For nominal attributes (words), for example, there are approaches such as the Global Most Common method [26]. For numerical data (real numbers), there exists a variety of simpler intuitive and model-based approaches [19][25][27].

A negative consequence of using simple imputation methods is that compelling a missing value to take the previouslyfound value, the attributes mean value, or a value of zero may produce a dataset with distorted covariances and correlations. If this dataset is applied to a machine-learning system, an inaccurate model may be obtained leading to poor approximations or erroneous conclusions. Removing incomplete observations from the dataset may cause substantial loss of information depending on the fraction of incomplete samples.

Model-based imputation methods are grounded on statistical and machine-learning fundamentals. While linear and stationary interpolation for imputation may naturally make the completed dataset biased, depending on the level of nonlinearity and nonstationarity involved, nonlinear model-based imputation focuses on replacing the missing value with the best estimate, based on previously sampled data [25]. Data streams impose further challenges to nonlinear modeling. Imputation and model adaptation should require reasonably limited time and memory. Incremental algorithms should scan samples only once [1][2][13].

The eFGP method described in the next section is suitable for online nonstationary environments. When the data stream changes (gradually or abruptly), a fuzzy model with reducedterm consequent polynomials – useful for prediction and data imputation – is adapted (parametrically or structurally). While most methods to deal with missing data cope with a single missing value per sample, eFGP is robust to multiple MAR and MCAR values per data-stream sample.

B. Brief Literature Review

Intelligent methods for missing-data imputation usually rely on various fuzzy-clustering techniques, such as Fuzzy C-Means (FCM) [28]–[30], Support Vector Regression (SVR) [28][31], or neural networks [29][32]. These techniques may be combined with machine-learning procedures. Often, metaheuristics, such as Genetic Algorithm (GA) [28] or other bioinspired techniques [32]–[34], are used for parameter adjustment. Intelligent models provide a nonlinear way to impute values based on information uncovered from the data.

A method to integrate SVR, FCM, and GA is proposed in [28]. FCM and SVR are trained with 'complete' data, i.e., with samples without missing values. Samples with missing values are used as inputs to a fuzzy model (using partial distance calculation), and to the trained SVR model. Estimations by both models are compared. If their difference is greater than a predefined error threshold, then GA is used to adapt the number of fuzzy clusters and an FCM weighting factor. Otherwise, FCM is used to estimate the missing values. Results were compared with an imputation-with-zeros approach and with other model combinations such as FCM-GA and SVR-GA. The proposed SVR-FCM-GA approach provided more accurate results.

A missing-data-estimation scheme, similar to [28], is discussed in [14]. FCM and SVR are replaced by a weighted K-Nearest Neighbor algorithm and an auto-associative neural network known as Auto-Encoder. Both [14] and [28] assume MAR type of data and, therefore, depend on the correlation between attributes. Maximum likelihood procedures are also commonly used for data imputation. Reference [35] points out that maximum likelihood has a number of advantages for small datasets with different patterns, nonlinear dynamics, and higher proportions of missing values.

A review on missing-data imputation methods for offline classification is given in [17]. A number of imputation algorithms such as Regularized Expectation-Maximization, Singular Value Decomposition and Bayesian Principal Component Analysis [36] were analyzed. Empirical results obtained by applying the Wilcoxon Signed Rank Test strongly argued in favor of the convenience of using imputation methods instead of resorting to case deletion or lack of imputation. However, there is no consensus about a best method for different datasets. Handling missing values has also been considered in conjunction with other pattern classification topics such as imbalanced datasets, semi-supervised learning, scalability, and temporal databases [36]–[38].

Grounded in the missing-data theory and well-validated statistical principles, two flagship techniques in modern missingdata analysis have shown to be promising [39]. The first concerns model-based or randomization-based inference for multiple imputation. The second is Full Information Maximum Likelihood (FIML) analyses. FIML requires a set of auxiliary variables, correlated with variables containing missingness, to be included in the model to avoid biased estimates [40]. Randomization-based inference requires repeatedly-chosen samples under a specific experiment. Therefore, FIML and Random inference cannot be directly applied to nonstationary data streams since the data are not available a priori for correlation analyses and resampling, and their statistical properties change over time. Evolving model-based inference for multiple imputation and prediction in online nonstationary environment is investigated in this paper.

Limitations of the aforementioned methods include: (i) prior availability of a closed input-dataset is generally necessary; (ii) offline learning methods require multiple passes over the data to determine the parameters of the imputation model, in spite of the use of nonlinear models; and (iii) the resulting classifier or predictor does not deal with the types of changes typical of nonstationary environments. Evolving methods, such as the eFGP, presented in this paper, address these limitations and are appropriate to nonstationary environments subject to concept changes. eFGP self-develops its rule structure and updates its parameters to handle, respectively, abrupt and gradual changes in online data streams. This characteristic is a key advantage of eFGP over the majority of machine learning and computational intelligence methods.

The fundamental idea is that the eFGP's learning updates the parameters of a fuzzy granule that is eventually located closer to the current data sample compared to the other granules. If a sample does not belong to any granule, but belongs to the expansion region of some granules, then the closest granule is chosen to be updated. This granule expands its bounds to cover the sample and, at the same time, the coefficients of associated local linear functions are updated. The granule may be dragged toward new samples if such samples belong to the same region. Concept shift and new behaviors may produce samples located relatively far from the current granules. As these samples are not in the expansion region of any granule, it is not practical to drag a granule toward them because the pattern that such granule currently represents would be forgotten. Thus, the eFGP approach is to create a new granule to cover the region where such 'far samples' are placed. This new granule is governed by a new rule, which expands the eFGP rule-base.

III. EVOLVING FUZZY GRANULAR PREDICTOR

A. Preliminaries

Evolving fuzzy-set-based granular modeling was proposed in [41][42] as a framework for modeling data streams in which the measured values are inherently uncertain. Information based on perception can be represented as fuzzy, interval, or numerical data to be taken into account in the fuzzy granular framework. Stream data are compressed to a few granules whose location and granularity reflect the structure of the data. This paper aims to model and process numerical (pointwise) data only. We focus on the question of missing data and model robustness.

eFGP provides pointwise and granular prediction of nonstationary functions, and linguistic description of the behavior of a system. Local eFGP models consist of IF-THEN rules developed incrementally from the data. Learning can start from an empty rule base and, as new information arises, granules and rules are created and their parameters updated over time. eFGP is therefore inherently accommodating of change in the source data, so that the resulting models never need to be redesigned or retrained from scratch.

For each granule constructed in the data space, there exists a corresponding rule that summarizes the general behavior of the elements that constitute the granule. The eFGP learning algorithm incrementally adapts granules and other parameters associated to rules so that the fuzzy model captures recent occurrences without forgetting previous behaviors.

Symbol conventions and definitions used in this paper are summarized in Table I for reference.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

TABLE I: List of symbols and definitions

Symbol	Definition
x	n-dimensional input vector
x_{j}	<i>j</i> -th attribute of the input vector
y	Actual output
\hat{y}	Estimated output
[h]	Time index (superscript)
γ^i	<i>i</i> -th information granule
$x_{ heta}$	Missing value
$ \theta $	Amount of missing values in a given x
A_j^i	i-th trapezoidal membership function of the j -th input attribute
\underline{a}_{i}^{i}	Lower limit of the support of A_j^i
\underline{a}_{i}^{i}	Lower limit of the core of A_i^i
\overline{a}_{j}^{i}	Upper limit of the core of A_j^i
$\overline{\overline{a}}_{j}^{i}$	Upper limit of the support of A_j^i
$ ho_j$	Maximum length that A_j^i can assume
B^i	<i>i</i> -th membership function of the output y
$\underline{\underline{b}}_{i}^{i}$	Lower limit of the support of B^i
\underline{b}_{i}^{i}	Lower limit of the core of B^i
\overline{b}_{j}^{i}	Upper limit of the core of B^i
$\begin{array}{c} \theta \\ A^{j}_{a} \overset{i}{=} \overset{j}{=} \overset{i}{=} \overset{j}{=} \overset{j}{=}$	Upper limit of the support of B^i
σ	Maximum length that B^i can assume
p^i	Complete affine consequent function of the <i>i</i> -th rule
$egin{array}{c} lpha_j^i \ q_{ heta}^i \end{array}$	<i>j</i> -th coefficient of function p^i
q_{ρ}^{i}	θ -th consequent function with reduced argument-list
	of the <i>i</i> -th rule – the θ -th term is omitted
$\beta^i_{j\theta}$	<i>j</i> -th coefficient of function q_{θ}^{i}
$\Psi_{\rm com}^i$	Activation degree of the <i>i</i> -th rule for the complete function p^i
Ψ^i_{inc}	Activation degree of the <i>i</i> -th rule for an incomplete function q_{θ}^{i}
ch	Convex hull operator
mp	Midpoint operator
h_r	Number of iterations to perform merging and deleting
RMSE	Root Mean Square Error
NDE	Non-Dimensional Error

B. Evolving Fuzzy Granular Model for Prediction and Missing-Data Imputation in an Online Environment

Let $(\mathbf{x}, y)^{[h]}$, h = 1, ..., be the *h*-th observation of a data stream. $\mathbf{x} \in \Re^n$ is an input multi-dimensional vector, and $y \in \Re$ is the actual output. Vectors are denoted by boldface lowercase letters. The actual output $y^{[h]}$ will be known after the input $\mathbf{x}^{[h]}$ arrives and a prediction $\hat{y}^{[h]}$ is given. An attribute x_j of $\mathbf{x} = (x_1, ..., x_n)$ is a real value. The same holds for y. The pair (\mathbf{x}, y) is a point in the product space $X \times Y$. Let $\gamma^i \in X \times Y$, i = 1, ..., c, be the current set of eFGP granules built on the basis of (\mathbf{x}, y) .

Rules R^i governing granules γ^i are given as

$$R^{i}: \text{ IF } (x_{1} \text{ is } A_{1}^{i}) \text{ AND } \dots \text{ AND } (x_{n} \text{ is } A_{n}^{i})$$

$$\text{THEN} \underbrace{(y \text{ is } B^{i})}_{\text{Linguistic}} \text{ AND } \left(\underbrace{\hat{y} = p^{i}(x_{1}, \dots, x_{n})}_{\text{Functional}}\right)$$

$$\text{OR} \underbrace{\hat{y} = q_{\theta}^{i}(x_{1}, \dots, x_{\theta-1}, x_{\theta+1}, \dots, x_{n}), \ \theta = 1, \dots, n}_{\text{Functional with reduced argument-list } (x_{\theta} \text{ omitted})}$$

where x_{θ} is a missing value; p^i and q_k^i are affine functions; and $A_j^i = (\underline{a}_j^i, \underline{a}_j^i, \overline{a}_j^i, \overline{a}_j^i)$ and $B^i = (\underline{b}^i, \underline{b}^i, \overline{b}^i, \overline{\overline{b}}^i)$ are trapezoidal membership functions related to the *i*-th rule. Trapezoidal functions are canonically represented by four parameters listed in ascending order, see Fig. 1. The intermediate parameters of

 A_i^i and B^i form the core. The core of a membership function, say A_j^i , is the region $[\underline{a}_j^i, \overline{a}_j^i]$ of the universe (range of possible values) of x_j characterized by elements with full membership in the set A_i^i . The boundary parameters of a membership function form its support. The support of A_i^i is the region $[\underline{a}_{i}^{i}, \overline{\overline{a}}_{i}^{i}]$ of the universe x_{j} characterized by elements with nonzero membership in the set A_j^i . The membership degree of x_j in A_i^i is given by μ_i^i . Therefore, if x_j belongs to the core of A_{i}^{i} , then $\mu_{i}^{i} = 1$. If x_{j} does not belong to the support of A_i^i , then $\mu_i^i = 0$. Notice that q_k^i has one term less than p^i and that a disjunction operator (OR) relates the terms. The set of rules R^i , i = 1, ..., c, is a fuzzy granular description of a system. Initially, c = 0, i.e., no prior knowledge is assumed. A rule provides a granular (by means of active output fuzzy sets B^i) and a pointwise (by means of p^i or q^i_{θ}) prediction. The functional consequent is given by either p^i , in case $\mathbf{x}^{[h]}$ is complete, or q_{θ}^i , in case x_{θ} is missing. The linguistic consequent offers prediction bounds and interpretability since trapezoids B^i can be connected to linguistic values.

4

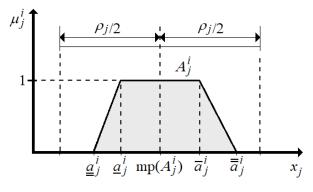


Fig. 1: Trapezoidal membership function

Affine functions are given as

$$p^{i}(x) = \alpha_{0}^{i} + \sum_{j=1}^{n} \alpha_{j}^{i} x_{j}, \qquad (1)$$

and

$$q_{\theta}^{i}(x) = \beta_{0\theta}^{i} + \sum_{j=1, j \neq \theta}^{n} \beta_{j\theta}^{i} x_{j}, \qquad (2)$$

 $\theta = 1, ..., n$. In general, coefficients α_j^i and $\beta_{j\theta}^i, j = 0, 1, ..., n$; $j \neq \theta$, are not linearly correlated in the sense of Pearson. They can only be fully correlated if the coefficient α_{θ}^i , directly related to a particular missing value x_{θ} , is equal to 0. Consequent functions, p^i and $q_{\theta}^i \forall \theta$, are updated using the Recursive Least Squares algorithm [42]. Subsequently, Section III-C addresses model structure and parameter adaptation.

As trapezoids A_j^i may overlap, eFGP pointwise prediction is found as the weighted mean value,

$$\hat{y} = \frac{\sum_{i=1}^{c} \Psi_{\text{com}}^{i} p^{i}(x_{1}, ..., x_{n})}{\sum_{i=1}^{c} \Psi_{\text{com}}^{i}},$$
(3)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

for a complete \mathbf{x} , or

$$\hat{y} = \frac{\sum_{i=1}^{c} \Psi_{\text{inc}}^{i} \ q_{\theta}^{i}(x_{1}, ..., x_{\theta-1}, x_{\theta+1}, ..., x_{n})}{\sum_{i=1}^{c} \Psi_{\text{inc}}^{i}},$$
(4)

if x_{θ} is missing. The activation degree of the *i*-th rule for **x** complete or incomplete, Ψ_{com}^i or Ψ_{inc}^i , is obtained from

$$\Psi_{\rm com}^i = T(A_1^i(x_1), ..., A_n^i(x_n))$$
(5)

or

$$\Psi_{\text{inc}}^{i} = T(A_{1}^{i}(x_{1}), ..., A_{\theta-1}^{i}(x_{\theta-1}), A_{\theta+1}^{i}(x_{\theta+1}), ... \\ ..., A_{n}^{i}(x_{n})).$$
(6)

T is any triangular norm. The minimum (Gödel) T-norm is used in this paper, but other choices are possible.

Granular prediction is given by the convex hull of sets B^{i^*} , where i^* are indices of active granules for $\mathbf{x}^{[h]}$. The convex hull of a set of trapezoids, say $B^1, ..., B^c$, is given as

$$ch(B^{1},...,B^{c}) = (T(\underline{b}^{1},...,\underline{b}^{c}), T(\underline{b}^{1},...,\underline{b}^{c}), S(\overline{b}^{1},...,\overline{b}^{c}), S(\overline{b}^{1},...,\overline{b}^{c})),$$
(7)

where S is the selected T-norm's corresponding conorm (the maximum T-conorm in this case). Figure 2 illustrates the convex hull operation of the trapezoids B^1 and B^2 defined in the output dimension. The result is also a trapezoidal membership function. Trapezoidal prediction given by ch(.) encloses \hat{y} and may help decision making and improve model acceptability. For example, the enclosure of \hat{y} , provided by the support of active trapezoids, may be interpreted as optimistic and pessimistic estimates in an application. Often, such enclosure of the output data can be more important than the numerical estimates since, with pointwise values, we have no idea about the error or uncertainty involved in the estimation.

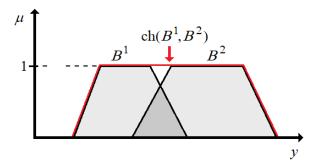


Fig. 2: Example of convex hull of the membership functions B^1 and B^2 defined in the universe of the output variable y

Suppose a sample $\mathbf{x}^{[h]}$ has multiple missing values, say x_{θ_1} and x_{θ_2} . A straightforward, but not practical, approach to deal with multiple missing data is to consider additional consequent functions with fewer terms. However, the number of parameters to be updated would scale exponentially with the number of attributes.

An effective approach for multiple missing values we employ for eFGP modeling consists in imputing the midpoint of the input membership functions related to the most active rule for the missing values. In this case, the activation level of the rule R^i , i = 1, ..., c, is calculated as

5

$$\Psi_{\text{inc}}^{i} = T(A_{1}^{i}(x_{1}), ..., A_{\theta_{1}-1}^{i}(x_{\theta_{1}-1}), A_{\theta_{1}+1}^{i}(x_{\theta_{1}+1}), ..., A_{\theta_{2}-1}^{i}(x_{\theta_{2}-1}), A_{\theta_{2}+1}^{i}(x_{\theta_{2}+1}), ..., A_{n}^{i}(x_{n})).$$
(8)

If R^i is the most active rule for $\mathbf{x}^{[h]}$ according to Ψ^i_{inc} , then the midpoint of its membership functions related to the missing values are used for imputation. The midpoint is the mean value of the core parameters of the membership function, i.e.,

$$x_{\theta_1}^{[h]} = \mathsf{mp}(A_{\theta_1}^i) = \frac{(\underline{a}_{\theta_1}^i + \overline{a}_{\theta_1}^i)}{2}$$
(9)

and

1

$$x_{\theta_2}^{[h]} = \mathrm{mp}(A_{\theta_2}^i) = \frac{(\underline{a}_{\theta_2}^i + \overline{a}_{\theta_2}^i)}{2}.$$
 (10)

The imputed (complete) sample is used by the fuzzy model to provide numerical and granular predictions at the time step h. If $\mathbf{x}^{[h]}$ has multiple missing values, Eq. (8) is used to choose the most active rule. After the imputation from Eq. (9) and (10), the complete equations, Eq. (3), (5), and (1), are combined to produce the numerical prediction. Additionally, the support of the convex hull of active membership functions, obtained from Eq. (7), is used to provide the granular prediction. The multiple-imputation procedure extends straightforwardly to larger amounts of missing data per sample.

C. Incremental Adaptation of the Fuzzy Granular Model

Let the midpoint of a trapezoidal membership function be the average of its core parameters, similar to Eq. (9). Moreover, let ρ_j and σ be the maximum length a granule can assume, respectively, along the *j*-th input dimension and output dimension. Parameter ρ_i delimits the maximum expansion region of trapezoidal membership functions around their midpoints, see Fig. 1. In other words, the parameters of a membership function, A_i^i , must not assume values lower than $mp(A_i^i) - \rho_j/2$ nor values greater than $mp(A_i^i) + \rho_i/2$ at any time step. Different values of ρ_j produce different representations of the same data set in different levels of granularity. $\rho_j \forall j$ and σ assume a single value in [0,1]. If ρ_i is equal to 0, then granules are not expanded. Learning creates a new rule for each sample, which causes overfitting. If ρ_i is equal to 1, then a single granule covers the entire data domain. Evolvability is reached by choosing intermediate values for ρ_i . The higher the value of ρ_i , the more compact tends to be the structure of the resulting eFGP model.

A new granule, γ^{c+1} , is created by adding a rule, R^{c+1} , to the current set of rules, $R = \{R^1, ..., R^c\}$. Granule and rule are created whenever either an input vector, $\mathbf{x}^{[h]}$, contains at least one element, $x_j^{[h]}$, j = 1, ..., n, that is not in the expansion region of A_j^i , i = 1, ..., c, or $y^{[h]}$ is not in the expansion region of B^i , i = 1, ..., c. Formally, $x_j^{[h]}$ must belong to $[mp(A_j^i) -$ This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

 $\rho/2$, mp $(A_i^i) + \rho/2$, j = 1, ..., n, to be considered by the *i*-th granule. Additionally, the actual output, $y^{[h]}$, must belong to $[mp(B^i) - \sigma/2, mp(B^i) + \sigma/2]$. Notice that $A^i_j \forall j$ and B^i have their parameters updated if (i) data samples are in their expansion regions, and (ii) R^i is the most active rule.

The new granule, γ^{c+1} , has trapezoidal memberships functions, A_j^{c+1} and B^{c+1} , in which

$$\underline{\underline{a}}_{j}^{c+1} = \underline{\underline{a}}_{j}^{c+1} = \overline{a}_{j}^{c+1} = \overline{\overline{a}}_{j}^{c+1} = x_{j}^{[h]}, \ j = 1, ..., n,$$
(11)

and

$$\underline{\underline{b}}^{c+1} = \underline{b}^{c+1} = \overline{b}^{c+1} = \overline{\overline{b}}^{c+1} = \overline{\overline{b}}^{c+1} = y^{[h]}.$$
 (12)

Therefore, the new granule, γ^{c+1} , is initially a point in the data space, the point (\mathbf{x}, y) . The coefficients of the complete consequent function, $\vec{p^{c+1}}$, are

$$\alpha_j^{c+1} = 0, \ j \neq 0, \ \text{and} \ \alpha_0^{c+1} = y^{[h]}.$$
 (13)

Similarly, the coefficients of the incomplete functions, $q_{\theta}^{c+1} \forall \theta$, are initialized as

$$\beta_{j\theta}^{c+1} = 0, \ j \neq 0, \ \text{and} \ \beta_{0\theta}^{c+1} = y^{[h]}.$$
 (14)

The adaptation of a rule R^i consists in: (i) expanding or contracting the support and the core of $A_j^i \forall j$ and B^i to accommodate new data; and (ii) updating the coefficients of complete and incomplete consequent functions, p^i and $q^i_{\theta} \forall \theta$.

If a data sample, $(\mathbf{x}, y)^{[h]}$, belongs to the expansion region of a granule, γ^i , then its membership functions are enlarged to cover the sample. If the sample is within γ^i , its parameters can be changed in the sense of contracting or expanding the core of its membership functions. The following situations may happen according to the position of a sample in relation to a granule (refer to Fig. 1):

• If
$$x_j^{[h]} \in [\operatorname{mp}(A_j^i) - \frac{\rho_j}{2}, \underline{\underline{a}}_j^i]$$

then $\underline{\underline{a}}_j^i(new) = x_j^{[h]}$ (support expansion)

• If
$$x_j^{[h]} \in [\underline{\underline{a}}_j^i, \underline{a}_j^i]$$

then $\underline{a}_j^i(new) = x_j^{[h]}$ (core expansion)

• If
$$x_j^{[h]} \in [\underline{a}_j^i, \operatorname{mp}(A_j^i)]$$

then $\underline{a}_j^i(new) = x_j^{[h]}$ (core contraction) (15)
• If $x_j^{[h]} \in [\operatorname{mp}(A_j^i)]^{-i}$

- If x_j^[h] ∈ [mp(A_jⁱ), ā_jⁱ] then ā_jⁱ(new) = x_j^[h] (core contraction)
 If x_j^[h] ∈ [ā_jⁱ, ā_jⁱ] then ā_jⁱ(new) = x_j^[h] (core expansion)
 If x_j^[h] ∈ [ā_jⁱ, mp(A_jⁱ) + P_j²] then ā_jⁱ(new) = x_j^[h] (support expansion)

When operating on core parameters, \underline{a}_{i}^{i} and \overline{a}_{i}^{i} , adjustment of the midpoint of γ^i is required. Thus,

$$\operatorname{mp}(A_j^i)(new) = \frac{\underline{a}_j^i(new) + \overline{a}_j^i(new)}{2}, \quad (16)$$

j = 1, ..., n. Support contraction may be necessary as a consequence of the midpoint adaptation. Thus,

6

 $\begin{array}{l} \bullet \quad \text{If } \operatorname{mp}(A^i_j)(new) - \frac{\rho_j}{2} > \underline{\underline{a}}^i_j \\ \text{ then } \underline{\underline{a}}^i_j(new) = \operatorname{mp}(A^i_j)(new) - \frac{\rho_j}{2} \end{array}$ (17)• If $\operatorname{mp}(A_i^i)(new) + \frac{\rho_j}{2} < \overline{\overline{a}}_i^i$

then
$$\overline{\overline{a}}_{j}^{i}(new) = \operatorname{mp}(A_{j}^{i})(new) + \frac{\rho_{j}}{2}$$

Adaptation of output trapezoids, B^i , uses data $y^{[h]}$ and relations analogous to those of Eq. (15)-(17). Only the most active granule, γ^i , is chosen to be adapted for a sample $(\mathbf{x}, y)^{[h]}$.

All consequent functions, p^i and $q^i_{\theta} \forall \theta$, are updated using the Recursive Least Squares algorithm [42] in case R^i is the most active rule for a complete $\mathbf{x}^{[h]}$. However, for a complete $\mathbf{x}^{[h]}$, coefficients $\beta_{i\theta}^{i}$, $j = 0, 1, ..., n; j \neq \theta$, are computed ignoring the attribute $x_{\theta}^{[h]}$, $\theta = 1, ..., n$. For an incomplete $\mathbf{x}^{[h]}$, with a unique missing element, $x_{\theta}^{[h]}$, only the coefficients of q_{θ}^{i} are updated. In case $\mathbf{x}^{[h]}$ contains multiple missing values, consequent coefficients are not updated.

After a number of time steps, h_r , merging and deleting rules may help to keep the fuzzy model succinct and updated. Automatic procedures to merge and delete rules are described as follows.

Granules may drift in the data space and become too close to each other. In this case, they may represent a single pattern so that merging them is important to keep a compact rulebase. The granule that results from merging must respect the limits imposed by ρ_j and σ . Neighbor granules, say γ^1 and γ^2 , are merged into a single granule, γ^{Ψ} , by combining their trapezoidal membership functions through the convex hull operator. Formally,

$$\begin{aligned} A_{j}^{\Psi} &= \operatorname{ch}(A_{j}^{1}, A_{j}^{2}) \\ &= (T(\underline{\underline{a}}_{j}^{1}, \underline{\underline{a}}_{j}^{2}), T(\underline{\underline{a}}_{j}^{1}, \underline{\underline{a}}_{j}^{2}), S(\overline{a}_{j}^{1}, \overline{a}_{j}^{2}), S(\overline{\overline{a}}_{j}^{1}, \overline{\overline{a}}_{j}^{2})), \end{aligned}$$
(18)

j = 1, ..., n, and

$$B^{\Psi} = ch(B^{1}, B^{2})$$

= $(T(\underline{b}^{1}, \underline{b}^{2}), T(\underline{b}^{1}, \underline{b}^{2}), S(\overline{b}^{1}, \overline{b}^{2}), S(\overline{\overline{b}}^{1}, \overline{\overline{b}}^{2})).$ (19)

Parameters of consequent functions of merged rules are obtained from

$$\alpha_j^{\Psi} = \frac{\alpha_j^1 + \alpha_j^2}{2}, \ j = 0, ..., n,$$
 (20)

and

$$\beta_{j\theta}^{\Psi} = \frac{\beta_{j\theta}^{1} + \beta_{j\theta}^{2}}{2}, \ j = 0, ..., \theta - 1, \theta + 1, ..., n; \ \forall \theta.$$
(21)

This strategy helps to reduce the number of rules and overlapped granules, covering similar information.

Concept change may cause granules and rules to become inactive. In this case, the most recent data do not fall in the region that a given granule covers for a number of iterations, i.e., in the region where past data used to fall. The rule that This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

governs the granule becomes useless in the current context. Rules and granules are removed if they are not activated during h_r time steps. The purpose is to keep the fuzzy rule base concise and formed only by elements that are useful to deal with the current environment. Nevertheless, some applications may require memorization of old and outdated events. In this case, parameter h_r may be set to ∞ to preserve the rules forever. The value chosen for h_r depends on how long we want to keep inactive rules in the memory of the model. Both eFGP parameters, ρ_j and h_r , depend on the purpose of the model. Different than ρ_j , parameter h_r has a secondary influence on the prediction performance.

The learning procedure to evolve an eFGP model is summarized in Algorithm 1. Steps 3 and 22 emphasize that samples are received and deleted one at a time – an essential feature in data stream processing. $|\theta|$ denotes the number of missing elements in a given $\mathbf{x}^{[h]}$. The resulting eFGP model is available at any time. The model is robust to single and multiple missing values per sample using a modified rule structure and an inherent (nonlinear and nonstationary) mechanism of learning and data imputation.

Algorithm 1 eFGP Online Incremental Learning

1: Define ρ , σ and h_r ;

- 2: while 1 do
- 3: Read input $\mathbf{x}^{[h]}, h = 1, ...;$
- 4: //Prediction
- 5: **if** $|\theta| = 0$ **then**
- 6: Give prediction \hat{y} using complete functions p^i (Eq. (3), (5), and (1));
- 7: else if $|\theta| = 1$ then
- 8: Give prediction \hat{y} using reduced-term functions q_{θ}^{i} (Eq. (4), (6), and (2));
- 9: else if $|\theta| > 1$ then
- 10: Choose the most active rule for $\mathbf{x}^{[h]}$ (Eq. (8));
- 11: Multiple imputation using the midpoints of the most active granule for $\mathbf{x}^{[h]}$ (Eq. (9) and (10));
- 12: Use complete functions p^i to give the prediction \hat{y} (Eq. (3), (5), and (1));
- 13: **end if**
- 14: Provide the granular prediction (Eq. (7));
- 15: //Model Adaptation $(y^{[h]}$ becomes available)
- 16: **if** $(x_j^{[h]} \notin [\operatorname{mp}(A_j^i) \rho/2, \operatorname{mp}(A_j^i) + \rho/2], j = 1, ..., n,$ OR $y^{[h]} \notin [\operatorname{mp}(B^i) - \sigma/2, \operatorname{mp}(B^i) + \sigma/2]) \forall i$ **then** 17: Create rule to accommodate $(\mathbf{x}, y)^{[h]}$ (Eq. (11)-(14));
- 18: else
- 19: Adapt the most active granule (Eq. (15)-(17));
- 20: Adapt consequent coefficients of the most active rule (Recursive Least Squares [42]);
- 21: end if

22: Delete sample $(\mathbf{x}, y)^{[h]}$;

- 23: **if** $h = zh_r$, z = 1, ... **then**
- 24: Delete inactive granules and rules;
- 25: Merge neighbor granules (Eq. (18)-(21));
- 26: **end if**
- 27: end while

IV. RESULTS AND DISCUSSIONS

7

A. Datasets and Evaluation Metrics

Benchmark datasets were chosen to evaluate the efficiency of eFGP. The datasets contain no missing data in principle, which is convenient for the purpose of the experiments and comparative analyses. They are:

- Death Valley (Furnace Creek) weather dataset¹. Records of monthly mean temperature in degrees Celsius from 1901 to 2009 (1306 observations) is considered. A fixed time window of 12 months, with no exogenous inputs, is used for one-step prediction. In Death Valley, superheated moving air masses are trapped by surrounding steep mountain ranges creating an extremely dry climate with high temperatures. Reference [43] gives a complete list of factors that produce high air temperatures and temperature variations in Death Valley.
- Capital Bike Sharing dataset². Located in Washington D.C., this bike loan system contains 2-year information (731 samples) of usage log data. 9 attributes are used: season, month, holiday, weekday, weather situation, temperature, apparent temperature, air humidity, and wind speed. The count of bikes hired in a day is the output. Sharing systems are a new way of renting bikes. Users can take and return a bike in different positions of a city. Apart from many applications of these systems, the characteristics of real-time data duration of travel, departure and arrival position, and others are attractive as a virtual sensor network that can be used to analyze mobility. Important events in a city can be detected by monitoring these data. Bike sharing plays an important role in traffic, environmental, and health issues.
- Airfoil Self-Noise dataset³. This dataset is related to a series of aerodynamic and acoustic tests conducted in an anechoic wind tunnel at the National Aeronautics and Space Administration (NASA) using different NACA 0012 airfoils. This is a regression problem that contains 1503 samples, 5 attributes, namely, frequency (Hertz), angle of attack (degree), chord length (meter), freestream velocity (meters per second), and suction-side displacement thickness (meter); and an output, the scaled sound pressure (decibel). Airfoil self-noise is due to the interaction between an airfoil blade and the turbulence produced in its own boundary layer and near wake [44]. It is the total noise produced when an airfoil encounters smooth nonturbulent inflow. The interest behind developing fundamental understanding and prediction models of the various self-noise mechanisms is motivated by its importance to broadband helicopter rotor, wind turbine, and airframe noises.

Prediction performance using the complete datasets and MCAR and MAR data were assessed. For MCAR scenarios, the chance of occurrence of missing values is equal among the attributes. eFGP models were constructed and analyzed using

³https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

¹https://www.nps.gov/deva/planyourvisit/weather.htm

²https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

datasets containing from 0% to 30% of missing values – a range usually used in related studies [28][29][31]. For example, for a dataset with 1000 entries, a random number between 1 and 1000 is chosen. After deleting the selected entry, a random number between 1 and 999 is chosen, and so on until a given percentage of values is missing.

For MAR data, a specific attribute is more inclined to receive an empty reading in relation to the other attributes. In this case, an attribute is taken at random to have its values more likely to be missing. Prediction performance is evaluated for different percentages of chance that the chosen attribute and the rest of the attributes are missing. The cases are: (i) 5% - 1% (which means 5% of chance that the value of the chosen attribute is missing, and 1% of chance that each of the remaining values is missing); (ii) 10% - 1%; (iii) 10% - 5%; (iv) 20% - 5%; (v) 20% - 10%; (vi) 30% - 5%; and (vii) 30% - 10%. For example, for the 5% - 1% case, and a dataset with 10 attributes and 100 samples – a total of 1000 entries – a random number between 1 and 1400 is chosen. Each of the 100 entries related to the chosen attribute receives 5 numbers in the lottery, instead of a single number of the entries related to the other attributes.

Model accuracy is quantified using the Root Mean Square Error (RMSE) index given as

$$\text{RMSE} = \frac{1}{H} \sum_{h=1}^{H} \sqrt{(\hat{y}^{[h]} - y^{[h]})^2},$$
(22)

where H is the number of iterations. The Non-Dimensional Error (NDE) index,

$$NDE = \frac{RMSE}{std(y^{[h]}\forall h)},$$
(23)

where std(.) is the standard deviation, is useful to compare the accuracy of a predictor in different data streams.

Additionally, eFGP provides granular outputs. The enclosure of the numerical data given by eFGP linguistic consequents, B^i , may be as important as pointwise estimates, \hat{y} , to assist decision making in an application. Therefore, we address numerical prediction accuracy, enclosures, and linguistic descriptions in the experiments.

Alternative evolving methods, namely, evolving Granular Neural Network (eGNN) [45], evolving Takagi-Sugeno (eTS) [46], extended Takagi-Sugeno (xTS) [47], and Fuzzy-set-Based evolving Modeling (FBeM) [42], are also evaluated either assuming the datasets are complete or removing a fraction of incomplete samples and replicating the last output.

B. eFGP Results for MCAR data

Average results for the Death Valley dataset considering different fractions of MCAR values and 10 runs of the eFGP learning algorithm for each case are shown in Table II. The eFGP initial parameters are $\rho = \sigma = 0.3$, and $h_r = 150$. As the percentage of missing data increases, the error indices increase monotonically, and the number of rules in the model structure tends to increase. New granules and rules are needed to cover incomplete samples since correlation information is partially lost. As shown in Fig. 3, the eFGP monthly temperature pointwise estimates for the roughest, 30% MCAR scenario,

track the peaks and valleys of the time series with reasonable accuracy. Similarly, Fig. 4 shows part of the granular prediction provided by eFGP (for a clearer view). Notice that the bounds of the granular prediction given by the support of active trapezoidal membership functions in the output domain enclose the actual temperature. If lower values for the granularity, ρ and σ , are chosen, then a narrower envelope can be achieved at the price of additional fuzzy rules. A trade-off between model compactness, interpretability of rules, pointwise accuracy, and narrowness of the granular output should be evaluated depending on the purpose of the model.

8

TABLE II: eFGP results for the Death Valley weather station assuming missing data of the MCAR type

N	ICAR	RMSE	NDE	Mean # of rules
	0%	0.0579 +/- 0.0018	0.2239 +/- 0.0070	13.3 +/- 0.1
	1%	0.0600 +/- 0.0014	0.2322 +/- 0.0055	13.9 +/- 0.5
	5%	0.0636 +/- 0.0018	0.2461 +/- 0.0072	20.5 +/- 0.9
	10%	0.0640 +/- 0.0020	0.2474 +/- 0.0080	22.9 +/- 0.8
	15%	0.0703 +/- 0.0041	0.2719 +/- 0.0158	27.7 +/- 1.1
	20%	0.0818 +/- 0.0059	0.3163 +/- 0.0223	28.8 +/- 1.1
	30%	0.1142 +/- 0.0057	0.4180 +/- 0.0222	28.1 +/- 2.3
2.0 3.0 4.0 2.0 4.0 5.0 5.0 5.0	3 - 7 - 5 - 5 - 1 - 3 -		50 875 900 Time index	925 950

Fig. 3: Pointwise eFGP prediction for the mean monthly temperature of Death Valley considering 30% of MCAR values

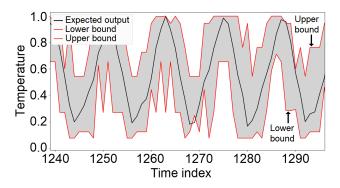


Fig. 4: Granular eFGP estimation for the Death Valley monthly mean temperature considering 30% of MCAR values

eFGP rules can be accessed anytime. For example, an active rule at h = 1295 is:

 R^i : IF (x_1 is [0.54, 0.59, 0.70, 0.79]) AND (x_2 is [0.68, 0.68, 0.83, 0.87]) AND (x_3 is [0.82, 0.83, 0.87, 0.95]) AND (x_4 is [0.78, 0.84, 0.89, 0.98]) AND (x_5 is [0.73, 0.75, 0.80, 0.86]) AND (x_6 is [0.57, 0.64, 0.76, 0.77]) AND (x_7 is [0.49, 0.55, 0.61, 0.61]) AND (x_8 is [0.19, 0.20, 0.34, 0.40]) AND (x_9 is [0.15, 0.19, 0.25, 0.26]) AND (x_{10} is [0.16, 0.22, 0.32, 0.39]) AND (x_{11} is [0.27, 0.34, 0.43, 0.47]) AND (x_{12} is [0.39, 0.39, 0.51, 0.61])

THEN (y is [0.51, 0.56, 0.72, 0.74])AND $(\hat{y} =$ $0.28x_7 + 0.14x_8 - 0.09x_9 + 0.58x_{10} - 0.33x_{11} + 0.39x_{12}$ OR $\hat{y} = 0.36 - 0.44x_2 + 0.55x_3 + 0.58x_4 - 0.43x_5 - 0.07x_6$ $0.24x_7 + 0.11x_8 + 0.19x_9 + 0.48x_{10} - 0.56x_{11} + 0.32x_{12}$ OR $\hat{y} = 0.20 + 0.16x_1 + 0.45x_3 - 0.01x_4 - 0.55x_5 + 0.39x_6 - 0.01x_4 - 0.00x_5 - 0.00x_6 -$ $0.18x_7 + 0.20x_8 - 0.11x_9 + 0.82x_{10} - 0.75x_{11} + 0.45x_{12}$ OR $\hat{y} = 0.64 - 0.11x_1 + 0.35x_2 + 0.29x_4 - 0.32x_5 + 0.25x_6 - 0.000x_1 + 0.000x_2 + 0.000x_1 +$ $0.31x_7 + 0.22x_8 + 0.40x_9 + 1.40x_{10} - 1.76x_{11} - 0.13x_{12}$ OR $0.28x_7 + 0.18x_8 - 0.28x_9 + 0.72x_{10} - 0.30x_{11} - 0.45x_{12}$ OR $\hat{y} = 0.09 + 0.21x_1 - 0.53x_2 + 0.64x_3 + 0.26x_4 - 0.01x_6 - 0.01x_6 - 0.01x_6 - 0.01x_6 - 0.01x_6 - 0.01x_6 - 0.00x_6 -$ $0.39x_7 + 0.15x_8 - 0.14x_9 + 0.72x_{10} - 0.28x_{11} + 0.24x_{12}$ OR $0.30x_7 + 0.13x_8 - 0.05x_9 + 0.56x_{10} - 0.31x_{11} + 0.35x_{12}$ OR $\hat{y} = 0.23 + 0.09x_1 - 0.21x_2 + 0.65x_3 + 0.24x_4 - 1.04x_5 + 0.09x_1 - 0.09x_1 - 0.09x_2 + 0.09x_3 + 0.09x_4 - 0.09x_5 + 0.09x_5 +$ $0.30x_6 + 0.14x_8 - 0.03x_9 + 0.20x_{10} - 0.39x_{11} + 0.82x_{12}$ OR $\hat{y} = 0.38 - 0.09x_1 - 1.06x_2 + 0.81x_3 + 1.13x_4 - 0.39x_5 - 0.09x_1 - 0.000x_2 + 0.000x_3 + 0.000x_5 - 0$ $0.55x_6 - 0.25x_7 + 0.35x_9 - 0.11x_{10} + 0.01x_{11} + 0.38x_{12}$ OR $0.01x_6 - 0.27x_7 + 0.13x_8 + 0.56x_{10} - 0.40x_{11} + 0.35x_{12}$ OR $\hat{y} = 0.18 + 0.09x_1 - 0.68x_2 + 0.82x_3 + 0.55x_4 - 0.70x_5 - 0.00x_5 -$ $0.05x_6 - 0.13x_7 + 0.07x_8 + 0.01x_9 + 0.01x_{11} + 0.70x_{12}$ OR $0.02x_6 - 0.29x_7 + 0.13x_8 - 0.23x_9 + 0.44x_{10} + 0.49x_{12}$ OR $\hat{y} = 0.22 + 0.12x_1 - 0.51x_2 + 0.52x_3 + 0.41x_4 + 0.18x_5 - 0.12x_1 + 0.12x_1 + 0.12x_2 + 0.12x_3 + 0.12x_4 + 0.12x_5 - 0.12x_5 + 0.12x_5 +$ $0.13x_6 - 0.47x_7 + 0.14x_8 + 0.03x_9 + 0.91x_{10} - 0.55x_{11}$

In case an ordered set of labels, such as 'very cold', 'cold', 'warm', 'hot' and 'very hot', is given to the antecedent and consequent trapeziums of each attribute, then the model comes with a level of interpretability as additional asset.

Results for the Capital bike sharing dataset are show in Table III. The eFGP initial parameters are $\rho = \sigma = 0.30$, and $h_r = 50$. A behavior similar to that observed in Table II for the error indices is noticed in Table III. With the increase of the amount of missing data, the error indices increase monotonically. The number of fuzzy rules tends to increase.

Figure 5a depicts the numerical estimates of the total count of hired bikes for the hardest, 30% MCAR, case. A seasonal pattern (2 cycles) is noticed. The number of shared bikes tends to reduce during the winters, as can be seen in the beginning of the time series and after 365 days. The variable, but increasing, trend over the two years is related to the popularization of the loan service. This time series distinguishes from the previously-analyzed weather time series mainly because its cycles are longer, i.e., the system dynamics is slower at that time granularity. From one side, a higher number of data

TABLE III: eFGP results for the Capital bike sharing dataset assuming missing data of the MCAR type

MCAR	RMSE	NDE	Mean # of rules
0%	0.1090 +/- 0.0015	0.4895 +/- 0.0068	10.4 +/- 0.1
1%	0.1153 +/- 0.0042	0.5178 +/- 0.0186	10.5 +/- 0.8
5%	0.1302 +/- 0.0039	0.5845 +/- 0.0178	8.9 +/- 0.2
10%	0.1403 +/- 0.0057	0.6303 +/- 0.0258	10.5 +/- 0.8
15%	0.1497 +/- 0.0102	0.6724 +/- 0.0459	12.1 +/- 0.4
20%	0.1559 +/- 0.0093	0.7002 +/- 0.0418	13.3 +/- 1.1
30%	0.1597 +/- 0.0098	0.7172 +/- 0.0444	21.8 +/- 2.2

samples per cycle can facilitate incremental learning. From the other side, only two cycles with seemingly-different aspects are available. Linear and non-adaptive models would certainly have their performance reduced over time due to the changes.

An accurate tracking of the original data can be observed in Fig. 5a by using the eFGP pointwise \hat{y} . Learning and online development of rules were key points to keep a reasonable prediction accuracy over time. Figure 5b shows the evolution of the eFGP rule-base. The granular prediction of the time series, given by the support of active trapezoidal membership functions, is essentially similar to that shown in Fig. 4. The bounds give a range of values around the pointwise prediction, which may be interpreted as a pessimistic and optimistic amount of bike loans in the next day. This may help decision making regarding transfer bikes to different service points, establish new service points, and schedule maintenance.

An example of active rule at h = 731 is:

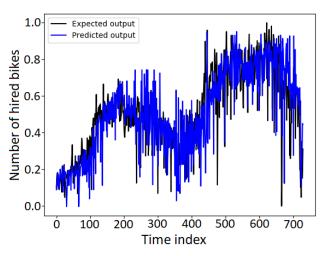
$$\begin{array}{l} R^i: \mbox{ IF } (x_1 \mbox{ is } [0.66, 0.66, 0.66, 0.66]) \mbox{ AND } (x_2 \mbox{ is } [0.75, 0.75, 0.75, 0.75]) \mbox{ AND } (x_3 \mbox{ is } [0.00, 0.00, 0.00, 0.00]) \mbox{ AND } (x_4 \mbox{ is } [0.43, 0.57, 0.57, 0.71]) \mbox{ AND } (x_5 \mbox{ is } [0.00, 0.00, 0.00, 0.00]) \mbox{ AND } (x_5 \mbox{ is } [0.55, 0.62, 0.74, 0.77]) \mbox{ AND } (x_7 \mbox{ is } [0.53, 0.57, 0.75, 0.77]) \mbox{ AND } (x_8 \mbox{ is } [0.42, 0.51, 0.61, 0.64]) \mbox{ AND } (x_9 \mbox{ is } [0.61, 0.64, 0.79, 0.86]), \end{array}$$

which means if season (x_1) is fall, month (x_2) is September, holiday (x_3) is false, weekdays (x_4) from Tuesday to Thursday, weather (x_5) is clear, temperature (x_6) and apparent temperature (x_7) are high, air humidity (x_8) is moderate, and wind speed (x_9) is high,

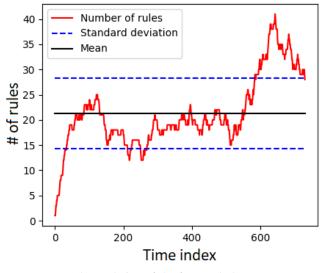
THEN (y is [0.63, 0.85, 0.85, 0.91]) AND

 $(\hat{y} = 0.05 + 0.44x_1 + 0.11x_2 + 0.00x_3 + 0.67x_4 + 0.24x_5 + 0.45x_6 + 0.49x_7 - 1.17x_8 + 0.02x_9 \text{ OR}$

 $\hat{y}=0.39+0.35x_2+0.00x_3+0.11x_4+1.04x_5+0.57x_6+0.49x_7-1.40x_8+0.68x_9$ OR


 $\hat{y} = 0.13 + 0.45x_1 + 0.00x_3 + 0.72x_4 + 0.20x_5 + 0.43x_6 + 0.47x_7 - 1.17x_8 + 0.04x_9 \text{ OR}$

 $\hat{y}=0.05+0.44x_1+0.11x_2+0.67x_4+0.24x_5+0.45x_6+0.49x_7-1.17x_8+0.02x_9$ OR


 $\hat{y}=0.29+0.11x_1+0.67x_2+0.00x_3+1.03x_5+0.61x_6+0.55x_7-1.37x_8-0.08x_9$ OR

 $\hat{y} = -0.07 + 0.55 x_1 + 0.01 x_2 - 0.00 x_3 + 0.85 x_4 + 0.46 x_6 + 0.46 x_7 - 1.10 x_8 - 0.02 x_9$ OR

 $\hat{y} = 0.12 + 0.46x_1 + 0.02x_2 - 0.00x_3 + 0.72x_4 + 0.24x_5 + 0.85x_7 - 1.16x_8 + 0.02x_9 \text{ OR}$

(a) Numerical prediction of hired bikes

(b) Evolution of the fuzzy rule base

Fig. 5: (a) Daily prediction of the number of hired bikes of the Capital sharing system in Washington D.C. considering eFGP and 30% of MCAR data; and (b) evolution of the number of eFGP rules over time

 $\hat{y} = 0.17 + 0.44 x_1 - 0.03 x_2 + 0.00 x_3 + 0.70 x_4 + 0.17 x_5 + 0.94 x_6 - 1.19 x_8 + 0.03 x_9$ OR

 $\hat{y} = -3.28 + 1.91 x_1 + 0.44 x_2 - 0.00 x_3 + 2.83 x_4 - 2.94 x_5 + 0.17 x_6 + 1.10 x_7 - 0.50 x_9$ OR

 $\hat{y} = -0.41 + 0.58x_1 + 0.23x_2 - 0.00x_3 + 0.87x_4 - 0.15x_5 + 1.00x_6 + 0.10x_7 - 1.04x_8)$

The consequent part indicates that the number of hired bikes will be high, and that the numerical prediction is provided by one of the 10 equations depending whether the input sample is complete or incomplete.

Results for the airfoil self-noise dataset and MCAR data are summarized in Table IV. The eFGP parameters are $\rho =$

 $\sigma = 0.1$, and $h_r = 48$. As the percentage of MCAR data increases, a monotonic increasing of the amount of fuzzy rules and error values are seen. The average RMSE and NDE indices are higher in this problem not only because the standard deviation of the data is higher (as revealed by the greater NDE/RMSE value), but also due to a lower correlation between the attributes and the predicted sound pressure, and to a relatively faster and irregular dynamical behavior. A stochastic component is inherit to the data, and this is reflected on the actual and predicted pressures, as shown in Fig. 6a by the rapid amplitude variations. In spite of the noise, we notice that the eFGP approximation follows the trend of the data, and captures the changes in the standard deviation.

10

TABLE IV: Summary of eFGP results for the airfoil self-noise dataset and MCAR values

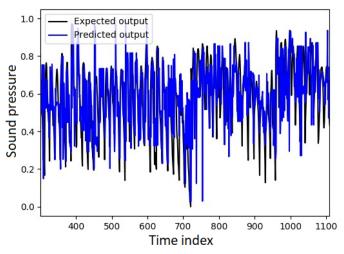
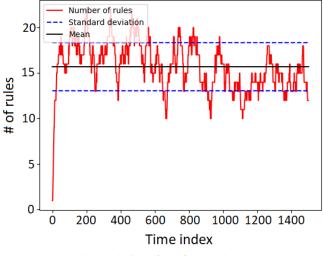
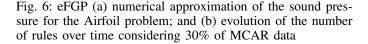

MCAR	RMSE	NDE	Mean # of rules
0%	0.1114 +/- 0.0003	0.6059 +/- 0.0017	3.4 +/- 0.1
1%	0.1174 +/- 0.0085	0.6381 +/- 0.0465	5.5 +/- 0.4
5%	0.1251 +/- 0.0056	0.6801 +/- 0.0305	11.5 +/- 1.4
10%	0.1436 +/- 0.0046	0.7808 +/- 0.0249	12.2 +/- 0.9
15%	0.1476 +/- 0.0062	0.8022 +/- 0.0034	12.9 +/- 0.9
20%	0.1502 +/- 0.0073	0.8164 +/- 0.0397	20.4 +/- 1.6
30%	0.1674 +/- 0.0064	0.9102 +/- 0.0351	20.5 +/- 0.6

Figure 6b shows the evolution of the number of eFGP rules for a typical run of the learning algorithm. Initially, a number of rules is created to accommodate never-before-seen data. After about 50 iterations, the model structure becomes more stable and parameter adaptation prevails over rule creation. The average number of rules is 15.7 on the simulation shown in Fig. 6b. An interesting event to be observed happens at iteration 720. A sudden reduction of the standard deviation of the data required a new incremental growth of the rule base. In other words, about 6 rules were added to the eFGP model for an appropriate handling of the concept shift.


An example of rule at h = 1502 is:

```
\begin{array}{l} R^i: \mbox{ IF } (x_1 \mbox{ is } [0.00, 0.02, 0.10, 0.10]) \mbox{ AND } \\ (x_2 \mbox{ is } [0.12, 0.15, 0.15, 0.21]) \mbox{ AND } \\ (x_3 \mbox{ is } [0.25, 0.27, 0.27, 0.29]) \mbox{ AND } \\ (x_4 \mbox{ is } [0.00, 0.09, 0.10, 0.10]) \mbox{ AND } \\ (x_5 \mbox{ is } [0.40, 0.43, 0.46, 0.50]) \end{array}
```


The rule can be read as: if frequency (x_1) is very low, angle of attack (x_2) is small, chord length (x_3) is small, freestream velocity (x_4) is very low, and suction side displacement thickness (x_5) is medium-small, then sound pressure (y) is medium-high.

(a) Numerical approximation of the sound pressure level

(b) Evolution of the fuzzy rule base

C. eFGP Results for MAR data

Experiments with MAR data were conducted for the same datasets. Table V summarizes the results. In general, the RMSE and NDE indices vary irregularly with the increase of MAR values – although a modest performance reduction is observed from the extreme cases. The size of the rule base increases with the amount of MAR data in most cases. However, the increase of the model structure is not in the same proportion as that observed for MCAR data. MCAR data impose more challenges to incremental modeling. In other words, if readings from a single attribute become partially available for some reason, the eFGP learning algorithm still benefits from the information of the other attributes to keep its prediction accuracy. Contrariwise, if the availability of readings of all

attributes are limited, then the algorithm uses approximations from nearest granules to provide predictions.

11

The result for Death Valley, shown in Table V, portrays that the maximum difference in average RMSE between the easiest (5%-1%) and the roughest (30%-10%) MAR cases is 0.0074 - a 10.9% increase. For the bike sharing and airfoil sound pressure problems, the same difference is of 13.9% and 10.7%, respectively. While 30% of missing values can be quite detrimental to other prediction models (as will be empirically shown in the next section), eFGP copes with MAR values in an evolving fashion, thus keeping reasonable RMSE and NDE rates. Notice also in Table V that the standard deviation of the error indices for 10 runs of the algorithm for each MAR case is minimal. The eFGP learning approach has provided prediction models that are robust to MAR values.

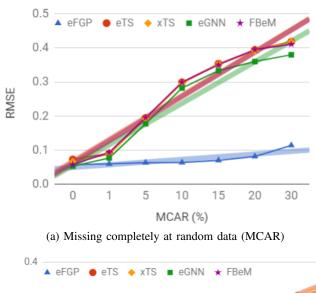
TABLE V: eFGP results for the Death Valley weather station, hired bikes, and airfoil self-noise considering MAR data

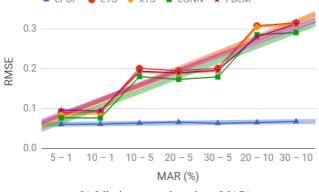
Death Valley monthly weather					
MAR	MAR RMSE		Mean # of rules		
5% - 1%	5% - 1% 0.0604 +/- 0.0021		14.5 +/- 0.9		
10% - 1%	0.0611 +/- 0.0010	0.2364 +/- 0.0041	14.4 +/- 0.4		
10% - 5%	0.0637 +/- 0.0031	0.2464 +/- 0.0122	20.4 +/- 0.5		
20% - 5%	0.0663 +/- 0.0029	0.2566 +/- 0.0112	19.7 +/- 1.6		
30% - 5%	0.0632 +/- 0.0015	0.2442 +/- 0.0059	20.7 +/- 0.8		
20% - 10%	0.0651 +/- 0.0034	0.2516 +/- 0.0132	29.9 +/- 1.2		
30% - 10%	0.0678 +/- 0.0019	0.2622 +/- 0.0075	22.7 +/- 1.2		
	Number of hired bi	kes in Washington D.	С.		
MAR	RMSE	NDE	Mean # of rules		
5% - 1%	0.1216 +/- 0.0066	0.5463 +/- 0.0298	8.0 +/- 0.4		
10% - 1%	0.1191 +/- 0.0049	0.5436 +/- 0.0224	7.8 +/- 0.3		
10% - 5%	0.1336 +/- 0.0064	0.6001 +/- 0.0287	9.4 +/- 0.6		
20% - 5%	0.1262 +/- 0.0048	0.5667 +/- 0.0215	8.9 +/- 0.7		
30% - 5%	0.1360 +/- 0.0052	0.6106 +/- 0.0234	8.9 +/- 0.3		
20% - 10%	0.1362 +/- 0.0056	0.6116 +/- 0.0253	10.6 +/- 0.9		
30% - 10%	30% - 10% 0.1383 +/- 0.0041 0		10.3 +/- 0.5		
	Airfoil s	ound pressure			
MAR	RMSE	NDE	Mean # of rules		
5% - 1%	0.1246 +/- 0.0127	0.6776 +/- 0.0694	4.1 +/- 0.1		
10% - 1%	0.1200 +/- 0.0046	0.6523 +/- 0.0254	3.9 +/- 0.1		
10% - 5%	0.1210 +/- 0.0060	0.0658 +/- 0.0329	6.8 +/- 0.6		
20% - 5%	0.1242 +/- 0.0056	0.6752 +/- 0.0306	11.1 +/- 1.1		
30% - 5%	0.1205 +/- 0.0022	0.6552 +/- 0.0120	11.3 +/- 0.7		
20% - 10%	0.1315 +/- 0.0040	0.7148 +/- 0.0219	12.4 +/- 1.0		
30% - 10%	0.1344 +/- 0.0032	0.7309 +/- 0.0175	11.6 +/- 0.8		

In summary, eFGP has shown to be able to handle nonstationary data streams containing MCAR and MAR values at different rates. The behavior of the algorithm has been stable in different real missing-data scenarios. MAR data are more easily dealt with by the algorithm compared to MCAR data. The latter requires a greater number of information granules and a larger expansion of the fuzzy rule base whereas parametric adaptation prevails in the former case.

D. Comparing Evolving Intelligent Models

eFGP models are compared with evolving Granular Neural Network (eGNN) [45], evolving Takagi-Sugeno (eTS) [46], extended Takagi-Sugeno (xTS) [47], and Fuzzy-set-Based evolving Modeling (FBeM) [42]. In the Death Valley problem, eFGP uses $\rho = \sigma = 0.3$, and $h_r = 150$. eGNN uses min-max neurons, $\rho^{[0]} = 0.2$, $h_r = 80$, $\zeta = 0.9$ (a constant for updating connection weights), and $\eta = 0.5$ (a threshold for the number of neurons created in h_r time steps). eTS uses $\Omega = 350$, and


This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems


IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

radius length, r = 0.7; xTS employs $\Omega = 350$; and FBeM uses $\rho = \sigma = 0.3$, and $h_r = 150$. These parameters provided the highest average-accuracy of each method based on 10 runs. As other methods are not supplied with mechanisms to impute missing data, a zero-order-hold approach is employed, i.e., the last prediction is replicated.

Figure 7 depicts the RMSE indices of the predictors for Death Valley using different proportions of missing values. Clearly, the increasing rate of eFGP is less than those of the other models. eFGP takes full advantage of the information within incomplete samples. The correlation matrix between attributes becomes more distorted if entire samples are removed from the stream. This more-strongly hampers the ability of the other models to give accurate predictions. Figure 7b highlights that the percentage of MAR values related to the attributes with less missing values is more influential to eTS, xTS, eGNN, and FBeM. The eFGP approach has demonstrated robustness to MAR data. Table VI gives a summary of the results achieved for all methods and situations illustrated in Fig. 7.

For the bike sharing dataset, eFGP models using $\rho = \sigma = 0.5$, and $h_r = 50$ were compared to: eGNN using min-max

(b) Missing at random data (MAR)

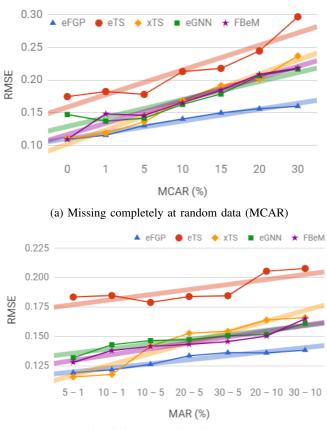
Fig. 7: Performance comparison on the prediction of the Death Valley monthly temperature

TABLE VI: Summary results for Death Valley

12

	Complete dataset						
Method	Method RMSE NDE # of Rules						
eFGP	0.0579 +/- 0.0018	0.2239 +/- 0.0070	13.3 +/- 0.1				
eGNN	0.0532 +/- 0.0019	0.2055 +/- 0.0070	14.0 + - 0.8				
eTS	0.0730 + 0.0001	0.2822 +/- 0.0000	11.0 + - 0.0				
xTS	0.0669 + 0.0000	0.2586 +/- 0.0000	8.0 +/- 0.0				
FBeM	0.0009 + 0.0000 0.0579 + 0.0018	0.2239 +/- 0.0070	13.3 ± 0.0				
PBCM		For MCAR scenarios	15.5 +/= 0.1				
	<u>v</u>		" (D 1				
Method	RMSE	NDE	# of Rules				
eFGP	0.1142 +/- 0.0057	0.4180 +/- 0.0222	28.1 +/- 2.3				
eGNN	0.3796 +/- 0.0237	1.4673 +/- 0.0917	8.9 +/- 0.7				
eTS	0.4180 +/- 0.0095	1.6153 +/- 0.0368	6.4 +/- 0.9				
xTS	0.4178 +/- 0.0432	1.6149 +/- 0.1670	3.8 +/- 1.5				
FBeM	0.4107 +/- 0.0182	1.5873 +/- 0.0702	9.8 +/- 0.9				
	Average results	for MAR scenarios					
Method	RMSE	NDE	# of Rules				
eFGP	0.0678 +/- 0.0019	0.2622 +/- 0.0075	22.7 +/- 1.2				
eGNN	0.2906 +/- 0.0088	1.1233 +/- 0.0340	14.8 +/- 0.7				
eTS	0.3150 +/- 0.0160	1.2174 +/- 0.0618	8.6 +/- 1.1				
xTS	0.3106 +/- 0.0138	1.2004 +/- 0.0536	5.4 +/- 1.1				
FBeM	0.3126 +/- 0.0168	1.2081 +/- 0.0651	12.9 +/- 0.4				

neurons, $\rho^{[0]} = 0.5$, $h_r = 50$, $\zeta = 0.9$, and $\eta = 1.5$; eTS with $\Omega = 350$, and r = 0.3; xTS using $\Omega = 350$; and FBeM with $\rho = \sigma = 0.5$, and $h_r = 50$. Figure 8a shows that eFGP is more robust than the other methods for MCAR data across the range of analyzed values. xTS presented the lowest RMSE for the complete dataset. However, removing a small percentage of random values from the data stream is enough for eFGP to overcome xTS. MAR results are shown in Fig. 8b. Notably, comparing the extreme 5-1 and 30-10 cases, eFGP is the model with the smallest growth rate. This argues in favor of its greater robustness. The percentage of missing values related to the attributes with less missing values is more influential to the predictions. Table VII summarizes the average accuracy and number of rules of the predictors. xTS and eFGP are the most accurate predictors of the amount of loans when the dataset is complete and incomplete, respectively.


TABLE VII: Summary results for the bike loans

	Complete dataset					
Method	RMSE	NDE	# of Rules			
eFGP	0.1090 +/- 0.0015	0.4895 +/- 0.0068	10.4 +/- 0.1			
eGNN	0.1471 +/- 0.0007	0.6602 +/- 0.0032	11.0 +/- 0.1			
eTS	0.1745 +/- 0.0000	0.7829 +/- 0.0000	16.0 +/- 0.0			
xTS	0.1078 +/- 0.0000	0.4854 +/- 0.0000	16.0 +/- 0.0			
FBeM	0.1090 +/- 0.0015	0.4895 +/- 0.0068	10.4 +/- 0.1			
	Average results t	for MCAR scenarios				
Method	RMSE	NDE	# of Rules			
eFGP	0.1597 +/- 0.0098	0.7172 +/- 0.0444	21.8 +/- 2.2			
eGNN	0.2168 +/- 0.0153	0.9720 +/- 0.0665	11.7 +/- 1.3			
eTS	0.2967 +/- 0.0621	1.3312 +/- 0.2788	10.8 +/- 2.9			
xTS	0.2370 +/- 0.0218	1.0630 +/- 0.0980	6.4 +/- 1.8			
FBeM	0.2180 +/- 0.0170	0.9816 +/- 0.0664	11.6 +/- 1.2			
	Average results	for MAR scenarios				
Method	RMSE	NDE	# of Rules			
eFGP	0.1383 +/- 0.0041	0.6210 +/- 0.0186	10.3 +/- 0.5			
eGNN	0.1515 +/- 0.0103	0.6801 +/- 0.0464	11.7 +/- 1.3			
eTS	0.2055 +/- 0.0477	0.9219 +/- 0.2140	16.0 +/- 4.9			
xTS	0.1661 +/- 0.0221	0.7451 +/- 0.0989	12.0 +/- 1.6			
FBeM	0.1650 +/- 0.0121	0.7400 +/- 0.0423	11.7 +/- 1.4			

In the airfoil sound pressure problem, eFGP uses $\rho = \sigma = 0.6$, and $h_r = 48$; eGNN employs min-max neurons, $\rho^{[0]} = 0.2$, $h_r = 80$, $\zeta = 0.9$, and $\eta = 1.5$; eTS uses $\Omega = 100$, and r = 0.9; xTS utilizes $\Omega = 100$; and FBeM uses $\rho = \sigma = 0.6$,

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on February 26,2020 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, XX 2018

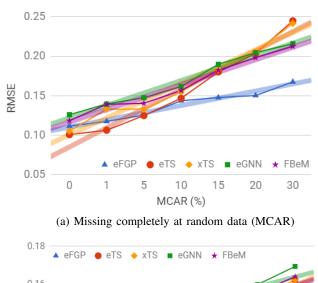

(b) Missing at random data (MAR)

Fig. 8: Performance comparison on the prediction of the Bike sharing dataset

and $h_r = 48$. Figure 9 shows the average performance of the models for MCAR and MAR cases. An increasing trend is noticed for all models. eFGP has been the most robust predictor in all scenarios. Although eTS and xTS are more accurate for the complete dataset, when about 3% of the data, in general, is missing, eFGP begins to prevail.

Table VIII compares error indices and number of rules. Even though eFGP uses only 3.4 granules against 9 and 12 clusters of eTS and xTS for the complete data, its error indices are close to those of eTS and xTS. Malfunction of sensors or failures in data communication can quickly deteriorate the performance of evolving models, as shown in the table for the missing-data cases. eFGP overcame eGNN, eTS, xTS and FBeM by 23.4%, 31.6%, 30.7%, and 21.2% in MCAR scenarios, and by 20.6%, 17.0%, 17.0%, and 17.9% in MAR settings.

The average time taken by eFGP to process a sample on a Intel i7 3.6GHz processor with 16GB RAM using Python-Ubuntu 18.04 on Windows 10 was 20.5, 11.6, and 9.3 milliseconds (ms), respectively, for the Death Valley, Bike Sharing, and Self-Noise datasets. FBeM spent 17.8, 10.7, and 8.4 ms; eTS spent 24.2, 15.5, and 9.9 ms; xTS spent 17.2, 10.9, and 8.6 ms; and eGNN consumed 23.9, 16.5, and 11.0 ms. eFGP is competitive with the other methods in processing time.

13

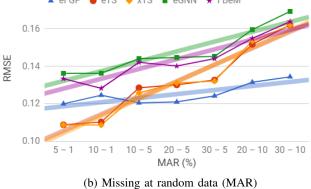


Fig. 9: Performance comparison on the prediction of the Airfoil self-noise dataset

TABLE VIII: Summary results for the Airfoil sound pressure

Complete dataset						
	1					
Method	RMSE	NDE	# of Rules			
eFGP	0.1114 +/- 0.0003	0.6059 +/- 0.0017	3.4 +/- 0.1			
eGNN	0.1259 +/- 0.0003	0.6839 +/- 0.0019	14.9 +/- 0.6			
eTS	0.1006 +/- 0.0000	0.5467 +/- 0.0000	9.0 +/- 0.0			
xTS	0.1050 +/- 0.0000	0.5705 +/- 0.0000	12.0 +/- 0.0			
FBeM	0.1114 +/- 0.0003	0.6059 +/- 0.0017	3.4 +/- 0.1			
	Average results	for MCAR scenarios				
Method	RMSE	NDE	# of Rules			
eFGP	0.1674 +/- 0.0064	0.9102 +/- 0.0351	20.2 +/- 0.6			
eGNN	0.2158 +/- 0.0058	1.1725 +/- 0.0316	45.5 +/- 1.4			
eTS	0.2449 +/- 0.0183	1.3307 +/- 0.0994	12.0 +/- 5.3			
xTS	0.2416 +/- 0.0199	1.3130 +/- 0.1079	9.2 +/- 1.9			
FBeM	0.2125 +/- 0.0141	1.1673 +/- 0.0329	45.5 +/- 1.4			
	Average results	for MAR scenarios				
Method	RMSE	NDE	# of Rules			
eFGP	0.1344 +/- 0.0032	0.7309 +/- 0.0175	11.6 +/- 0.8			
eGNN	0.1693 +/- 0.0060	0.9197 +/- 0.0324	26.0 +/- 2.2			
eTS	0.1620 +/- 0.0106	0.8804 +/- 0.0575	9.4 +/- 0.6			
xTS	0.1620 +/- 0.0068	0.8801 +/- 0.0367	9.4 +/- 2.3			
FBeM	0.1638 +/- 0.0076	0.9129 +/- 0.0336	26.0 +/- 2.3			

E. Statistical Hypothesis Testing

Balanced one-way ANalysis Of VAriance (ANOVA) [48] compares evolving models under the same roof, regardless of the application. ANOVA determines if the mean accuracies of a pair of methods are statistically different. The null hypothesis

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on February 26,2020 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2935688, IEEE Transactions on Fuzzy Systems

is that the mean accuracy of the methods is essentially the same. A cutoff value, p, less than 0.05 indicates that the accuracy of at least one of the methods is significantly different from the others. Considering the results of all experiments with complete datasets, a p = 0.7372 was obtained and, therefore, the null hypothesis holds true. In other words, any method, eFGP, eGNN, eTS, xTS, and FBeM may provide the best estimates for a particular stream if no data is missing. eFGP is competitive with state-of-the-art evolving methods.

From the results of the MCAR and MAR experiments, the values p = 0.0015 and p = 0.0031, respectively, were obtained. The mean accuracy of the methods is not all the same, i.e., the null hypothesis is rejected. The Tukey Honestly Significant Difference test [48] was performed to compare pairs of methods. The Tukey test is optimal for balanced oneway ANOVA. Table IX shows the results of the test for a 95% confidence interval (CI) for the true difference of the means.

TABLE IX: Tukey Test Results

Tukey Test results with complete dataset				
Method 1	Method 2	CI LB	Diff of Means	CI UB
eFGP	eGNN	-0.2090	-0.0464	0.1163
eFGP	eTS	-0.2230	-0.0604	0.1023
eFGP	xTS	-0.1621	0.0006	0.1632
eFGP	FBeM	-0.1626	0	0.1626
eGNN	eTS	-0.1767	-0.0140	0.1486
eGNN	xTS	-0.1157	0.0469	0.2096
eGNN	FBeM	-0.1163	0.0464	0.2090
eTS	xTS	-0.1017	0.0610	0.2236
eTS	FBeM	-0.1023	0.0604	0.2230
xTS	FBeM	-0.1632	-0.0006	0.1621
			r MCAR scenario	
Method 1	Method 2	CI LB	Diff of Means	CI UB
eFGP	eGNN	-0.6443	-0.3229	-0.0014
eFGP	eTS	-0.7798	-0.4584	-0.1369
eFGP	xTS	-0.7216	-0.4001	-0.0786
eFGP	FBeM	-0.6699	-0.3485	-0.0270
eGNN	eTS	-0.4569	-0.1355	0.1860
eGNN	xTS	-0.3987	-0.0772	0.2442
eGNN	FBeM	-0.3470	-0.0256	0.2959
eTS	xTS	-0.2632	0.0583	0.3797
eTS	FBeM	-0.2116	0.1099	0.4314
xTS	FBeM	-0.2698	0.0516	0.3731
			r MAR scenarios	
Method 1	Method 2	CI LB	Diff of Means	CI UB
eFGP	eGNN	-0.4529	-0.2300	-0.0071
eFGP	eTS	-0.5141	-0.2913	-0.0684
eFGP	xTS	-0.4745	-0.2516	-0.0287
eFGP	FBeM	-0.4808	-0.2580	-0.0351
eGNN	eTS	-0.2842	-0.0613	0.1616
eGNN	xTS	-0.2445	-0.0216	0.2012
eGNN	FBeM	-0.2509	-0.0280	0.1949
eTS	xTS	-0.1832	0.0396	0.2625
eTS	FBeM	-0.1896	0.0333	0.2562
xTS	FBeM	-0.2292	-0.0063	0.2165

LB: Lower Bound; UB: Upper Bound; CI: Confidence Interval.

A negative or positive 'difference of means' denotes that the first or second method, respectively, outperformed the other on that scenario. However, if the confidence interval [LB, UB] (see Table IX) contains the value 0, then the difference between the methods is not significant at the 0.05 level. In this case, for applications other than those evaluated, any of the methods can be better than the other, and both should ideally be examined. Notice from the MAR and MCAR scenarios in Table IX that eFGP is statistically superior. eGNN, eTS, xTS, and FBeM are similar among themselves in missing-data scenarios.

14

In addition to the preeminence of eFGP in terms of overall accuracy in missing-data context, the granular approximation of the underlying time series or data stream, and the linguistic description associated to fuzzy granules are distinctive features to consider the eFGP approach.

V. CONCLUSION

In this contribution we shed light on the question of missing values in nonstationary data streams. We described an evolving granular fuzzy-rule-based modeling method for function approximation and time series prediction in online settings where values may be missing at random and missing completely at random. eFGP models can handle single and multiple missing values per sample due to its constructive features, namely, (i) a modified rule structure that includes reduced-term consequent functions, and conjunctive and disjunctive operators; and (ii) a learning algorithm customized to such modified structure, which uses partial similarity, and time-varying granules.

An extensive set of experimental results on actual weather, social service, and engineering applications considering from 1% to 30% of missing values has shown that the eFGP approach outperforms other evolving fuzzy and neuro-fuzzy modeling methods that resort to sample deletion and replication of the last output. Moreover, the results are statistically significant on MAR and MCAR scenarios according to an ANOVA-Tukey test. A particular characteristic of eFGP concerns the provision of a granular enclosure of the underlying time series or data stream, which may assist decision making and have a variety of interpretations in different areas. The eFGP approach may inspire fundamental modifications of other computational-intelligence methods to include the capability of dealing with missing data and providing numerical and granular estimates in a nonlinear and time-varying way, considering the properties and changes of data streams.

Further work will discuss missing-data imputation in semisupervised multiclass classification of data streams. The development of fuzzy granules with different geometries and incremental adaptation of the parameters of aggregation operators will be discussed considering streams of nonstationary data subject to missing values. Imputation of nominal values, and imputation in information-retrieval and natural-languageprocessing contexts will also be discussed.

ACKNOWLEDGMENT

Daniel Leite acknowledges the support of the Serrapilheira Institute (grant number Serra - 1812-26777). Igor Škrjanc is grateful to the Slovenian Research Agency - Program P2-0219: Modeling, Simulation and Control.

REFERENCES

[1] D. Leite, *Evolving Granular Systems*. PhD thesis, University of Campinas, School of Electrical and Computer Engineering, 2012.

- [2] J. Gama, Knowledge Discovery from Data Streams. CRC Press, 2010.
- [3] P. Angelov, X. Gu, and J. Principe, "Autonomous learning multimodel systems from data streams," *IEEE Trans Fuzzy Syst*, vol. 26, no. 4, pp. 2213–2224, 2018.
- [4] D. Leite, R. M. Palhares, V. C. Campos, and F. Gomide, "Evolving granular fuzzy model-based control of nonlinear dynamic systems," *IEEE Trans Fuzzy Syst*, vol. 23, no. 4, pp. 923–938, 2015.
- [5] D. Dovžan, V. Logar, and I. Škrjanc, "Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a water treatment process," *IEEE Trans Fuzzy Syst*, vol. 23, no. 5, pp. 1761–1776, 2015.
- [6] Z. Mirzamomen and M. R. Kangavari, "Evolving fuzzy min-max neural network based decision trees for data stream classification," *Neural Process Lett*, vol. 45, no. 1, pp. 341–363, 2017.
- [7] J. J. Rubio, "USNFIS: Uniform stable neuro fuzzy inference system," *Neurocomputing*, vol. 262, pp. 57–66, 2017.
- [8] R. Hyde, P. Angelov, and A. R. MacKenzie, "Fully online clustering of evolving data streams into arbitrarily shaped clusters," *Info Sci*, vol. 382-383, pp. 96–114, 2017.
- [9] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er, "An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks," *IEEE Trans Fuzzy Syst*, vol. 25, no. 5, pp. 1175–1192, 2017.
- [10] E. Lughofer and M. Pratama, "Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models," *IEEE Trans Fuzzy Syst*, vol. 26, no. 1, pp. 292–309, 2018.
- [11] G. Andonovski, G. Mušič, S. Blažič, and I. Škrjanc, "Evolving model identification for process monitoring and prediction of non-linear systems," *Eng Appl Artif Intell*, vol. 68, pp. 214–221, 2018.
- [12] E. Soares, P. Costa, B. Costa, and D. Leite, "Ensemble of evolving data clouds and fuzzy models for weather time series prediction," *Appl Soft Comput*, vol. 64, pp. 445–453, 2017.
- [13] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, "Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey," *Info Sci*, vol. 490, pp. 344– 368, 2019.
- [14] I. Aydilek and A. Arslan, "A novel hybrid approach to estimating missing values in databases using K-nearest neighbors and neural networks," *Int J Innov Comput I*, vol. 7, no. 8, pp. 4705–4717, 2012.
- [15] T. D. Pigott, "A review of methods for missing data," *Educ Res Eval*, vol. 7, no. 4, pp. 353–383, 2001.
- [16] A. Farhangfar, L. A. Kurgan, and W. Pedrycz, "A novel framework for imputation of missing values in databases," *IEEE Trans Syst Man Cybern, Part A: Syst Hum*, vol. 37, no. 5, pp. 692–709, 2007.
- [17] J. Luengo, S. García, and F. Herrera, "On the choice of the best imputation methods for missing values considering three groups of classification methods," *Knowl Inf Syst*, vol. 32, pp. 77–108, 2012.
- [18] V. Audigier, I. R. White, S. Jolani, T. Debray, M. Quartagno, J. Carpenter, S. van Buuren, and M. Resche-Rigon, "Multiple imputation for multilevel data with continuous and binary variables," *Stat Sci*, vol. 33, no. 2, pp. 160–183, 2018.
- [19] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. Altman, "Missing value estimation methods for DNA microarrays," *Bioinformatics*, vol. 17, no. 6, pp. 520–525, 2001.
- [20] M. Amiri and R. Jensen, "Missing data imputation using fuzzy-rough methods," *Neurocomputing*, vol. 205, pp. 152–164, 2016.
- [21] M. L. Yadav and B. Roychoudhury, "Handling missing values: A study of popular imputation packages in R," *Knowl Based Syst*, vol. 160, pp. 104–118, 2018.
- [22] J. J. Rubio and A. Bouchachia, "MSAFIS: An evolving fuzzy inference system," *Soft Comput*, vol. 21, no. 9, pp. 2357–2366, 2017.
- [23] P. Angelov, Autonomous Learning Systems: From Data Streams to Knowledge in Real-Time. Wiley: Chichester, 2012.
- [24] W. Pedrycz, A. Skowron, and V. Kreinovich, Handbook of Granular Computing. Wiley: Chichester, England, 2008.

- [25] R. J. A. Little and D. B. Rubin, *Statistical Analysis with Missing Data*. Wiley Series in Probability and Statistics, 2 ed., 2002.
- [26] F. Lobato, C. Sales, I. Araujo, V. Tadaiesky, L. Dias, L. Ramos, and A. Santana, "Multi-objective genetic algorithm for missing data imputation," *Pattern Recognit Lett*, vol. 68, pp. 126–131, 2015.
- [27] C. Hopkin, R. Hoyle, and N. Gottfredson, "Maximizing the yield of small samples in prevention research: A review of general strategies and best practices," *Prev Sci*, vol. 16, no. 7, pp. 950–955, 2015.
- [28] I. Aydilek and A. Arslan, "A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm," *Info Sci*, vol. 233, pp. 25–35, 2013.
- [29] S. Azim and S. Aggarwal, "Using fuzzy C-means and multi layer perceptron for data imputation: Simple v/s complex dataset," in *IEEE Int Conf on Recent Advances in Info Tech*, pp. 197–202, 2016.
- [30] D. Li, H. Gu, and L. Zhang, "A hybrid genetic algorithm-fuzzy C-means approach for incomplete data clustering based on nearest-neighbor intervals," *Soft Comput*, vol. 17, no. 10, pp. 1787–1796, 2013.
- [31] P. Saravanan and P. Sailakshmi, "Missing value imputation using fuzzy possibilistic C-means optimized with support vector regression and genetic algorithm," *J Theor Appl Inf Technol*, vol. 72, no. 1, 2015.
- [32] V. Kuppusamy and I. Paramasivam, "Grey fuzzy neural network-based hybrid model for missing data imputation in mixed database," *Int J of Intell Eng and Syst*, vol. 10, no. 3, pp. 146–155, 2017.
- [33] L. Zhang, W. Lu, X. Liu, W. Pedrycz, C. Zhong, and L. Wang, "A global clustering approach using hybrid optimization for incomplete data based on interval reconstruction of missing value," *Int J Intell Inf Technol*, vol. 31, no. 4, pp. 297–313, 2016.
- [34] N. Samat and M. Salleh, "A study of data imputation using fuzzy Cmeans with particle swarm optimization," in *Int Conf on Soft Comput* and Data Mining, pp. 91–100, Springer, 2017.
- [35] M. Bańbura and M. Modugno, "Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data," J Appl Econom, vol. 29, no. 1, pp. 133–160, 2014.
- [36] T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning*, vol. 1. Springer Series in Statistics. New York, 2001.
- [37] H. Li, X. Deng, and E. Smith, "Missing data imputation for paired stream and air temperature sensor data," *Environmetrics*, vol. 28, no. 1, 2017.
- [38] I. Žliobaitė and J. Hollmén, "Optimizing regression models for data streams with missing values," *Mach Learn*, vol. 99, pp. 47–73, 2015.
- [39] K. M. Lang and T. D. Little, "Principled missing data treatments," *Prev Sci*, vol. 19, no. 3, pp. 284–294, 2018.
- [40] J. Graham, "Adding missing-data-relevant variables to fiml-based structural equation models," *Struct Equ Model*, vol. 10, pp. 80–100, 2003.
- [41] D. Leite, F. Gomide, R. Ballini, and P. Costa, "Fuzzy granular evolving modeling for time series prediction," in *IEEE Int Conf on Fuzzy Systems*, pp. 2794–2801, 2011.
- [42] D. Leite, R. Ballini, P. Costa, and F. Gomide, "Evolving fuzzy granular modeling from nonstationary fuzzy data streams," *Evolving Systems*, vol. 3, no. 2, pp. 65–79, 2012.
- [43] S. Roof and C. Callagan, "The climate of Death Valley, California," Bull Am Meteorol Soc, vol. 84, pp. 1725–1739, 2003.
- [44] T. F. Brooks, D. S. Pope, and A. M. Marcolini, *Airfoil Self-noise and Prediction*. Technical report, NASA RP-1218, 1989.
- [45] D. Leite, P. Costa, and F. Gomide, "Evolving granular neural networks from fuzzy data streams," *Neural Netw*, vol. 38, pp. 1–16, 2013.
- [46] P. Angelov and D. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," *IEEE Trans Syst Man Cybern, Part B: Cybern*, vol. 34, no. 1, pp. 484–498, 2004.
- [47] P. Angelov and X. Zhou, "Evolving fuzzy systems from data streams in real-time," in *Int Symp on Evolving Fuzzy Systems*, pp. 29–35, 2006.
- [48] B. Antonisamy, P. S. Premkumar, and S. Christopher, *Principles and Practice of Biostatistics*. Elsevier Health Sciences, 2017.